Вещественные числа — различия между версиями
Rybak (обсуждение | вклад) (→Неполнота числовой оси) |
Rybak (обсуждение | вклад) (→Неполнота числовой оси) |
||
| Строка 84: | Строка 84: | ||
1) Для всех рациональных <tex> \delta \in (0; 1): </tex> | 1) Для всех рациональных <tex> \delta \in (0; 1): </tex> | ||
| − | <tex> (d + \delta)^2 = d^2 + 2d\delta + \delta^2 | + | <tex> (d + \delta)^2 = d^2 + 2d\delta + \delta^2 \\ |
| − | + | \delta^2 < \delta \Rightarrow (d + \delta)^2 < d^2 + 2d\delta + \delta = d^2 + (2d+1)\delta </tex> | |
Заметим, что если <tex> \delta < \frac{2 - d^2}{2d+1}</tex>, то <tex>d^2 + (2d+1)\delta < 2 ,\ d^2 < 2,\ 2 - d^2 > 0 \Rightarrow \delta > 0 </tex> | Заметим, что если <tex> \delta < \frac{2 - d^2}{2d+1}</tex>, то <tex>d^2 + (2d+1)\delta < 2 ,\ d^2 < 2,\ 2 - d^2 > 0 \Rightarrow \delta > 0 </tex> | ||
Версия 08:26, 18 ноября 2010
Лекция от 13 сентября 2010.
Содержание
Натуральные числа
Множество натуральных чисел определяется следующим образом:
За числом в натуральном ряде непосредственно следует , между и других нет.
Гильберт:
Натуральные числа - первичные элементы, природа которых не обсуждается, все остальное базируется на этом.
Целые числа
Множество целых чисел . Также
Рациональные числа
Множество рациональных чисел
Множество рациональных чисел упорядочено, то есть всегда выполняется только один из трех случаев: или
Модуль
| Определение: |
| — модуль или абсолютная величина числа x |
Свойства модуля:
Аксиома Архимеда
В множестве выполняется аксиома Архимеда:
Дополнение множества рациональных чисел
Пусть — два числовых множества.
| Определение: |
| Запись означает, что . |
Аналогично определяются записи типа , и т. д. и т. п.
Если , то запись означает, что .
Неполнота числовой оси
| Утверждение: |
Пусть
Тогда |
|
Допустим, что такое существует и . Тогда возможны три случая: Случай невозможен. Докажем это. Предположим, что , Значит число можно представить в виде несократимой дроби . Тогда: 2 - простое, значит делится на , противоречие. Возможны два случая: либо , либо . Рассмотрим первый из них, второй доказывается аналогичным образом 1) Для всех рациональных
Заметим, что если , то ; Для такого , противоречие. |
Этим утверждением обнаруживается серьезный пробел во множестве рациональных чисел. Для его ликвидации вводятся некоторые объекты. При таком пополнении должны выполняться:
- 4 арифметических действия с сохранением законов арифметики.
- Сохранение упорядоченности.
- Выполнение аксиомы непрерывности:
Пусть и — 2 произвольных подмножества из пополненного множества рациональных чисел, и , то в пополненном множестве
Получим множество, называемое множеством вещественных чисел — .
Из разбора ясно, что мы стоим на аксиоматических позициях.
Для анализа важно то, что для выполняется аксиома непрерывности.
Существует несколько моделей :
- Модель Дедекинда
- Модель Вейерштрасса
- Модель Кантора
Базируясь на аксиоме Архимеда и непрерывности, можно установить, что всюду плотно на :
В любом вещественном интервале найдется рациональное число.
Для нас этот важен тем, что он гарантирует единственность пополнения для выполнения аксиомы непрерывности.
Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу.