Модуль непрерывности функции — различия между версиями
Komarov (обсуждение | вклад) м (добавлена категория) |
(→Теорема о выпуклом модуле непрерывности) |
||
Строка 47: | Строка 47: | ||
Так как все функции семейства выпуклы вверх, то для любого <tex>\alpha \in A</tex> верно: | Так как все функции семейства выпуклы вверх, то для любого <tex>\alpha \in A</tex> верно: | ||
:<tex>\beta f_{\alpha}(t_1) + (1 - \beta) f_{\alpha}(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br /> | :<tex>\beta f_{\alpha}(t_1) + (1 - \beta) f_{\alpha}(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br /> | ||
− | Но | + | Но по определению <tex>f(t) \le f_{\alpha}(t)</tex>, следовательно, |
:<tex>\beta f(t_1) + (1 - \beta) f(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br /> | :<tex>\beta f(t_1) + (1 - \beta) f(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br /> | ||
Переходя в правой части неравенства к нижней грани множества <tex>F</tex>, получаем искомое неравенство. | Переходя в правой части неравенства к нижней грани множества <tex>F</tex>, получаем искомое неравенство. | ||
Строка 58: | Строка 58: | ||
Пусть <tex>\omega \in \Omega</tex>. Тогда существует <tex>\omega^* \in \Omega^*</tex> такая, что <tex>\forall \lambda, t \ge 0</tex> | Пусть <tex>\omega \in \Omega</tex>. Тогда существует <tex>\omega^* \in \Omega^*</tex> такая, что <tex>\forall \lambda, t \ge 0</tex> | ||
:<tex>\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \omega(t)</tex> | :<tex>\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \omega(t)</tex> | ||
+ | |proof= | ||
+ | По св-ву 2 имеем <tex>\omega(\lambda t) \le (1 + \lambda) \omega (t)</tex> для всех <tex>\lambda</tex> и <tex>t \geq 0</tex>. Обозначим <tex>u = \lambda t</tex>, тогда <tex>\lambda = \frac ut</tex>. | ||
+ | |||
+ | Перепишем равенство : <tex>\omega(u) \le (1 + \frac ut) \omega (t)</tex>. Определим теперь функцию <tex>\omega^*(u) = \inf\limits_{t > 0} (1 + \frac ut)\omega(t)</tex>. | ||
+ | Рассмотрим семейство функций <tex> \tilde \omega(u)_t = (1 + \frac ut)\omega(t), t > 0</tex>. Каждая функция из этого семейства выпукла как линейная. Но тогда <tex>\omega^*(u)</tex> выпукла вверх по доказанному выше факту. | ||
+ | |||
+ | Докажем теперь, что <tex>\omega^*(u)</tex> - модуль непрерывности. Действительно, | ||
+ | #<tex>\omega^*</tex> выпукла вверх | ||
+ | #<tex>\omega^*(0) = \inf\limits_{t > 0}{\omega(t)} = 0</tex> (т. к. <tex>\lim \limits_{t \to +0} \,\omega(t) = 0</tex> ) | ||
+ | #<tex>\omega^*</tex> не убывает. В самом деле, <tex>u_1 \leq u_2 \Rightarrow (1 + \frac{u_1}t)\omega(t) \leq (1 + \frac{u_2}t)\omega(t)</tex>. Переходя к инфимумам обеих частей последнего неравенства, получаем <tex>u_1 \leq u_2 \Rightarrow \omega^*(u_1) \leq \omega^*(u_2)</tex>. | ||
+ | |||
+ | Еще раз вспомним св-во № 2 модулей непрерывности : <tex>\omega(u) \le (1 + \frac ut) \omega (t)</tex>. Рассматривая точные нижние грани обеих частей и используя определение ф-ции <tex>\omega^*(u)</tex>, получим требуемые в условии теоремы неравенства (объяснение того, как именно эти неравенства получаются, довольно тяжело описать словами, поэтому лучше его проделать самому - прим. наборщика). | ||
+ | |||
+ | Итак, построенная нами функция <tex>\omega^*(t)</tex> является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. | ||
+ | |||
}} | }} | ||
+ | |||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] |
Версия 11:17, 18 ноября 2010
Определение: |
Функция
| называется модулем непрерывности, если:
Свойства модулей непрерывности
1)
Доказательство ведется по индукции. Для неравенство тривиально. Пусть утверждение верно для . Тогда , ч. т. д.
2)
Доказательство:
3) Пусть для некоторой функции
Видно, что треубется доказать только полуаддитивность.
Т. к. , то .
Тогда .
4) Пусть
Докажем, опираясь на пункт 3. Покажем, что убывает.
, - выпуклая комбинация 0 и .
Из выпуклости следует: . Но , следовательно, , то есть, функция является убывающей.
Примеры
По свойству четыре видно, что можно построить сколь угодно много модулей непрерывности. Например,
- функция возрастает.
- функция является выпуклой вверх.
Из этого факта следует неравенство
Теорема о выпуклом модуле непрерывности
Класс модулей непрерывности обозначим
. Класс выпуклых вверх модулей непрерывности обозначим .Важное значение имеет теорема о выпуклом модуле непрерывности, которая основывается на следующем факте:
Утверждение: |
Пусть имеется семейство выпуклых функций . Тогда — также выпуклая функция. |
Требуется показать, что: Так как все функции семейства выпуклы вверх, то для любого верно:Но по определению , следовательно, |
Теорема (о выпуклом модуле непрерывности): |
Пусть . Тогда существует такая, что
|
Доказательство: |
По св-ву 2 имеем для всех и . Обозначим , тогда .Перепишем равенство : . Определим теперь функцию . Рассмотрим семейство функций . Каждая функция из этого семейства выпукла как линейная. Но тогда выпукла вверх по доказанному выше факту.Докажем теперь, что - модуль непрерывности. Действительно,
Еще раз вспомним св-во № 2 модулей непрерывности : Итак, построенная нами функция . Рассматривая точные нижние грани обеих частей и используя определение ф-ции , получим требуемые в условии теоремы неравенства (объяснение того, как именно эти неравенства получаются, довольно тяжело описать словами, поэтому лучше его проделать самому - прим. наборщика). является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам. |