Список заданий по АСД 2к 2015 осень — различия между версиями
Строка 42: | Строка 42: | ||
# Граф называется вершинно k-связным, если он остаётся связным после удаления любых не более чем (k - 1) вершин. Доказать или опровергнуть, что в вершинно k-связном графе любые k вершин лежат на простом цикле. | # Граф называется вершинно k-связным, если он остаётся связным после удаления любых не более чем (k - 1) вершин. Доказать или опровергнуть, что в вершинно k-связном графе любые k вершин лежат на простом цикле. | ||
# Пусть $G$ - связный граф. Обозначим как $\kappa(G)$ - минимальное число вершин, которое необходимо удалить, чтобы граф потерял связность. (для полного графа это число равно n - 1), $\lambda(G)$ - минимальное число рёбер, которое необходимо удалить, чтобы граф потерял связность, $\delta(G)$ - минимальную степень в вершины в графе $G$. Докажите, что для любых $a$, $b$, $c$, таких что $1 \le a \le b \le c$, существует граф $G$, такой что $\kappa(G) = a$, $\lambda(G) = b$, $\delta(G) = c$. | # Пусть $G$ - связный граф. Обозначим как $\kappa(G)$ - минимальное число вершин, которое необходимо удалить, чтобы граф потерял связность. (для полного графа это число равно n - 1), $\lambda(G)$ - минимальное число рёбер, которое необходимо удалить, чтобы граф потерял связность, $\delta(G)$ - минимальную степень в вершины в графе $G$. Докажите, что для любых $a$, $b$, $c$, таких что $1 \le a \le b \le c$, существует граф $G$, такой что $\kappa(G) = a$, $\lambda(G) = b$, $\delta(G) = c$. | ||
+ | # Рассмотрим неориентированный граф $G$. Запустим dfs, затем ориентируем рёбра дерева dfs $T$ от корня, а остальные - к корню. Доказать, что компоненты сильной связности в получившемся графе равны компонентам рёберной двусвязности в исходном графе | ||
+ | # Разработать алгоритм поиска компонент рёберной двусвязности, используя ровно один запуск dfs. | ||
+ | # Разработать алгоритм поиска компонент вершинной двусвязности, используя ровно один запуск dfs. | ||
+ | # Пусть $T$ - дерево dfs. Укажите способ за $O(E)$ посчитать число пар $(e_1, e_2)$, таких что 1) $e1 \in T$; 2) $e2\not\in T$; 3) граф $G$ после удаления рёбер $e_1$ и $e_2$ - не связен. | ||
+ | # Пусть $T$ - дерево dfs. Укажите способ за $O(E)$ посчитать число пар $(e_1, e_2)$, таких что 1) $e1 \in T$; 2) $e2 \in T$; 3) граф $G$ после удаления рёбер $e_1$ и $e_2$ - не связен. | ||
+ | # В первом издании Кормена была ошибка. Там было сказано, что вершина v есть точка сочленения тогда и только тогда, когда (v - корень И у v ≥ 2 сына) ИЛИ (v - не корень И up[v] ≥ enter[v]). Приведите контрпример. | ||
+ | # Приведите пример графа с отрицательными рёбрами, на котором алгоритм Дейкстры работает неверно. | ||
+ | # Пусть веса рёбер не обязательно неотрицательны, но отрицательных циклов нет. Добавим в алгоритм Дейкстры следующее: если производится успешная релаксация по ребру $vx$ и $x \in U$, то вешина $x$ удаляется из $U$. Докажите, что, если этот алгоритм находит кратчайшие пути в графе. | ||
+ | # Приведите пример графа, в котором алгоритм из предыдущего задания рабоатает экспоненциальное время. | ||
+ | # Предложите граф, в котором алгоритм Дейкстры делает $\Omega(E)$ успешных релаксаций |
Версия 09:11, 25 сентября 2015
<wikitex>
- Доказать, что если в ориентированном графе существует цикл, то в нем существует и простой цикл.
- Доказать, что если в неориентированным графе существует цикл, то в нем существует и простой цикл.
- Будем называть согласованным циклом в графе класс эквивалентности циклических путей относительно циклического сдвига. При этом циклический путь не должен проходить два раза по одному ребру в разных направлениях. Докажите, что в графе есть согласованный цикл тогда и только тогда когда там есть цикл.
- Петя придумал отношение средней связности: $u$ средне связана с $v$, если из $u$ достижима $v$ или из $v$ достижима $u$. Является ли это отношение отношением эквивалентности?
- Пусть граф $G$ - объединение двух различных простых путей из $u$ в $v$. Докажите, что в $G$ есть цикл.
- Харари 2.3
- Харари 2.5
- Харари 2.9
- Харари 2.13
- Харари 2.15
- Будем говорить, что $G$ связан короткими путями, если между любыми двумя вершинами в $G$ есть путь длины не более 3. Докажите, что либо $G$, либо $\overline G$ связан короткими путями.
- Харари 2.16
- Харари 2.20
- Харари 2.22
- Харари 2.29
- Харари 2.31
- Харари 2.32
- Харари 2.33
- Харари 2.34 (а)
- Харари 2.34 (б)
- Харари 2.35
- Харари 2.36
- Харари 4.2
- Харари 4.3
- Харари 4.4
- Харари 4.6
- Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения.
- Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост.
- Какое максимальное число точек сочленения может быть в графе с $n$ вершинами?
- При каких соотношениях $a$, $b$, $n$, $m$, $k$ существует граф с $a$ точками сочленения, $b$ мостами, $n$ вершинами, $m$ рёбрами, $k$ компонентами связности?
- Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это рефлексивно-транзитивное замыкание $R$.
- Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой.
- Харари 3.2
- Харари 3.3
- Харари 3.4
- Харари 3.5
- Харари 3.6
- Харари 3.7
- Харари 3.9
- Граф называется вершинно трёхсвязным, если он остаётся связным после удаления любых не более чем двух вершин. Доказать или опровергнуть, что в вершинно трёхсвязном графе любые три вершины лежат на простом цикле.
- Граф называется вершинно k-связным, если он остаётся связным после удаления любых не более чем (k - 1) вершин. Доказать или опровергнуть, что в вершинно k-связном графе любые k вершин лежат на простом цикле.
- Пусть $G$ - связный граф. Обозначим как $\kappa(G)$ - минимальное число вершин, которое необходимо удалить, чтобы граф потерял связность. (для полного графа это число равно n - 1), $\lambda(G)$ - минимальное число рёбер, которое необходимо удалить, чтобы граф потерял связность, $\delta(G)$ - минимальную степень в вершины в графе $G$. Докажите, что для любых $a$, $b$, $c$, таких что $1 \le a \le b \le c$, существует граф $G$, такой что $\kappa(G) = a$, $\lambda(G) = b$, $\delta(G) = c$.
- Рассмотрим неориентированный граф $G$. Запустим dfs, затем ориентируем рёбра дерева dfs $T$ от корня, а остальные - к корню. Доказать, что компоненты сильной связности в получившемся графе равны компонентам рёберной двусвязности в исходном графе
- Разработать алгоритм поиска компонент рёберной двусвязности, используя ровно один запуск dfs.
- Разработать алгоритм поиска компонент вершинной двусвязности, используя ровно один запуск dfs.
- Пусть $T$ - дерево dfs. Укажите способ за $O(E)$ посчитать число пар $(e_1, e_2)$, таких что 1) $e1 \in T$; 2) $e2\not\in T$; 3) граф $G$ после удаления рёбер $e_1$ и $e_2$ - не связен.
- Пусть $T$ - дерево dfs. Укажите способ за $O(E)$ посчитать число пар $(e_1, e_2)$, таких что 1) $e1 \in T$; 2) $e2 \in T$; 3) граф $G$ после удаления рёбер $e_1$ и $e_2$ - не связен.
- В первом издании Кормена была ошибка. Там было сказано, что вершина v есть точка сочленения тогда и только тогда, когда (v - корень И у v ≥ 2 сына) ИЛИ (v - не корень И up[v] ≥ enter[v]). Приведите контрпример.
- Приведите пример графа с отрицательными рёбрами, на котором алгоритм Дейкстры работает неверно.
- Пусть веса рёбер не обязательно неотрицательны, но отрицательных циклов нет. Добавим в алгоритм Дейкстры следующее: если производится успешная релаксация по ребру $vx$ и $x \in U$, то вешина $x$ удаляется из $U$. Докажите, что, если этот алгоритм находит кратчайшие пути в графе.
- Приведите пример графа, в котором алгоритм из предыдущего задания рабоатает экспоненциальное время.
- Предложите граф, в котором алгоритм Дейкстры делает $\Omega(E)$ успешных релаксаций