Отношение связности, компоненты связности — различия между версиями
(→См. также) |
|||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Две вершины <tex>u</tex> и <tex>v</tex> называются '''связаными''' ''(adjacent)'', если в графе <tex>G</tex> существует [[Основные определения теории графов|путь]] из <tex>u</tex> в <tex>v</tex> (обозначение: <tex>u \rightsquigarrow v </tex>).}} | + | Две вершины <tex>u</tex> и <tex>v</tex> называются '''связаными''' ''(англ. adjacent)'', если в графе <tex>G</tex> существует [[Основные определения теории графов|путь]] из <tex>u</tex> в <tex>v</tex> (обозначение: <tex>u \rightsquigarrow v </tex>).}} |
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Связность {{---}} '''[[Отношение_эквивалентности|отношение эквивалентности]]''' ''(equivalence relation)''. | + | Связность {{---}} '''[[Отношение_эквивалентности|отношение эквивалентности]]''' ''(англ. equivalence relation)''. |
|proof= | |proof= | ||
'''[[Рефлексивное_отношение|Рефлексивность]]''': <tex>\forall a \in V a \rightsquigarrow a</tex> (очевидно). | '''[[Рефлексивное_отношение|Рефлексивность]]''': <tex>\forall a \in V a \rightsquigarrow a</tex> (очевидно). | ||
Строка 19: | Строка 19: | ||
|id = def2 | |id = def2 | ||
|definition= | |definition= | ||
− | '''Компонентой связности''' ''(connected component)'' называется класс эквивалентности относительно связности.}} | + | '''Компонентой связности''' ''(англ. connected component)'' называется класс эквивалентности относительно связности.}} |
{{Определение | {{Определение | ||
|id = connected_graph | |id = connected_graph | ||
|definition= | |definition= | ||
− | Граф <tex>G=(V, E)</tex> называется '''связным''' ''(connectivity graph)'', если он состоит из одной компоненты связности. В противном случае граф называется '''несвязным'''.}} | + | Граф <tex>G=(V, E)</tex> называется '''связным''' ''(англ. connectivity graph)'', если он состоит из одной компоненты связности. В противном случае граф называется '''несвязным'''.}} |
== Случай ориентированного графа == | == Случай ориентированного графа == | ||
Строка 31: | Строка 31: | ||
<wikitex>{{Определение | <wikitex>{{Определение | ||
|definition= | |definition= | ||
− | Отношение $R(v, u)$ называется отношением '''слабой связности''' ''(weak connectivity)'', если вершины $u$ и $v$ связаны в неориентированном графе $G'$, полученном из графа $G$ удалением ориентации с рёбер. | + | Отношение $R(v, u)$ называется отношением '''слабой связности''' ''(англ. weak connectivity)'', если вершины $u$ и $v$ связаны в неориентированном графе $G'$, полученном из графа $G$ удалением ориентации с рёбер. |
}} | }} | ||
Строка 48: | Строка 48: | ||
|id=sc_def | |id=sc_def | ||
|definition= | |definition= | ||
− | Отношение <tex>R(v, u) = v \rightsquigarrow u \land u \rightsquigarrow v</tex> на вершинах графа называется отношением '''сильной связности''' ''(strong connectivity)''. | + | Отношение <tex>R(v, u) = v \rightsquigarrow u \land u \rightsquigarrow v</tex> на вершинах графа называется отношением '''сильной связности''' ''(англ. strong connectivity)''. |
}} | }} | ||
Строка 61: | Строка 61: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пусть <tex>G = (V, E)</tex> — [[Основные_определения_теории_графов|ориентированный граф]]. '''Компонентой сильной связности''' ''(strongly connected component)'' называется класс эквивалентности множества вершин этого графа относительно сильной связности.}} | + | Пусть <tex>G = (V, E)</tex> — [[Основные_определения_теории_графов|ориентированный граф]]. '''Компонентой сильной связности''' ''(англ. strongly connected component)'' называется класс эквивалентности множества вершин этого графа относительно сильной связности.}} |
[[Файл:Components2.png|400px|thumb|left|Пример ориентированного графа с тремя компонентами сильной связности.]] | [[Файл:Components2.png|400px|thumb|left|Пример ориентированного графа с тремя компонентами сильной связности.]] | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | [[Основные_определения_теории_графов|Ориентированный граф]] <tex>G = (V, E)</tex> называется '''сильно связным''' ''(strongly connected)'', если он состоит из одной компоненты сильной связности.}} | + | [[Основные_определения_теории_графов|Ориентированный граф]] <tex>G = (V, E)</tex> называется '''сильно связным''' ''(англ. strongly connected)'', если он состоит из одной компоненты сильной связности.}} |
<br clear="all" /> | <br clear="all" /> |
Версия 20:40, 5 ноября 2015
Содержание
Случай неориентированного графа
Определение: |
Две вершины путь из в (обозначение: ). | и называются связаными (англ. adjacent), если в графе существует
Теорема: |
Связность — отношение эквивалентности (англ. equivalence relation). |
Доказательство: |
Рефлексивность: (очевидно). Симметричность: (в силу неориентированности графа). Транзитивность: . Действительно, сначала пройдем от до , затем от до , что и означает существования пути . |
Определение: |
Компонентой связности (англ. connected component) называется класс эквивалентности относительно связности. |
Определение: |
Граф | называется связным (англ. connectivity graph), если он состоит из одной компоненты связности. В противном случае граф называется несвязным.
Случай ориентированного графа
В общем случае для ориентированного графа существование пути — не симметричное отношение, поэтому вместо понятия связности различают понятие слабой и сильной связности.
Слабая связность
<wikitex>
Определение: |
Отношение $R(v, u)$ называется отношением слабой связности (англ. weak connectivity), если вершины $u$ и $v$ связаны в неориентированном графе $G'$, полученном из графа $G$ удалением ориентации с рёбер. |
Теорема: |
Слабая связность является отношением эквивалентности. |
Доказательство: |
Аналогично доказательству соответствующей теоремы для неориентированного графа. |
</wikitex>
Сильная связность
Определение: |
Отношение | на вершинах графа называется отношением сильной связности (англ. strong connectivity).
Теорема: |
Сильная связность — отношение эквивалентности. |
Доказательство: |
Рефлексивность и симметричность очевидны. Рассмотрим транзитивность: |
Определение: |
Пусть ориентированный граф. Компонентой сильной связности (англ. strongly connected component) называется класс эквивалентности множества вершин этого графа относительно сильной связности. | —
Определение: |
Ориентированный граф называется сильно связным (англ. strongly connected), если он состоит из одной компоненты сильной связности. |
См. также
Источники информации
- Отношения связности для вершин неорграфа на ivtb.ru
- Харари Фрэнк Теория графов: Пер. с англ./ Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 296 с. — ISBN 978-5-397-00622-4.