Приближение непрерывной функции полиномами на отрезке — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}} == Постановка задачи == В курсе математического анализа уже рассмотрено дв…»)
 
Строка 31: Строка 31:
 
Пусть функция <tex>f</tex> - непрерывна на <tex>[a; b]</tex>. Тогда <tex>\forall \varepsilon > 0 \ \exists P(x)</tex> - полином, такой, что <tex>\forall x \in [a; b] \Rightarrow |f(x) - P(x)| < \varepsilon</tex>
 
Пусть функция <tex>f</tex> - непрерывна на <tex>[a; b]</tex>. Тогда <tex>\forall \varepsilon > 0 \ \exists P(x)</tex> - полином, такой, что <tex>\forall x \in [a; b] \Rightarrow |f(x) - P(x)| < \varepsilon</tex>
 
}}
 
}}
 +
[[Категория:Математический анализ 1 курс]]

Версия 02:40, 20 ноября 2010

Эта статья находится в разработке!

Постановка задачи

В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный зарактер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью инерполяционного полинома:

[math]f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)[/math]
[math]f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) + \frac{f^{(n + 1)}(c_x)}{(n + 1)!} \cdot \omega_n(x)[/math]

Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции.

Можно поставить иную задачу, которая является намного более сложной: пусть функция [math]f[/math] непрерывна на отрезке [math][a; b][/math]. Существует ли [math]\forall \varepsilon \gt 0[/math] некоторый полином [math]P[/math] (неважно, какой степени) такой, что [math]\forall x \in [a; b] \Rightarrow |f(x) - P(x)| \lt \varepsilon[/math]?

Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию.

Заметим, что непрерывность функции является необходимым условием. Действительно, пусть [math]f[/math] такова, что [math]\forall \varepsilon \gt 0[/math] полином найдётся. Покажем, что [math]f[/math] необходимо непрерывна:

[math]\forall \varepsilon \gt 0[/math] есть полином [math]P[/math], "обслуживающий" [math]\varepsilon[/math] на всём отрезке.
[math]|f(x + \Delta x) - f(x)| \le |f(x + \Delta x) - P(x + \Delta x)| + |f(x) - P(x)| + |P(x + \Delta x) - P(x)| \le 2 \varepsilon + |P(x + \Delta x) - P(x)|[/math].

Но полином непрерывен, а, значит, [math]\forall \varepsilon \gt 0 \ \exists \delta \gt 0: |\Delta x| \lt \delta \Rightarrow |P(x + \Delta x) - P(x)| \lt \varepsilon[/math].

Тогда [math]\forall \varepsilon \gt 0 \ \exists \delta \gt 0: |\Delta x| \lt \delta \Rightarrow |f(x + \Delta x) - f(x)| \lt 3 \varepsilon[/math], то есть, [math]f[/math] непрерывна в точке [math]x[/math].

Положительный ответ на поставленный вопрос впервые был дан Вейерштрассом.

Теорема о существовании искомого полинома

Теорема (Вейерштрасс):
Пусть функция [math]f[/math] - непрерывна на [math][a; b][/math]. Тогда [math]\forall \varepsilon \gt 0 \ \exists P(x)[/math] - полином, такой, что [math]\forall x \in [a; b] \Rightarrow |f(x) - P(x)| \lt \varepsilon[/math]