Типы дифференциальных уравнений — различия между версиями
(→Уравнение в полных дифференциалах) |
(→Уравнение в полных дифференциалах) |
||
Строка 110: | Строка 110: | ||
{{Определение| definition= Уравнение вида: <tex>M(x, y)dx + N(x, y)dy = 0 \:\: (6)</tex> называется уравнением в полных дифференциалах, если <tex>(6) = du(x, y)</tex>}} | {{Определение| definition= Уравнение вида: <tex>M(x, y)dx + N(x, y)dy = 0 \:\: (6)</tex> называется уравнением в полных дифференциалах, если <tex>(6) = du(x, y)</tex>}} | ||
т.к. <tex>du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -</tex> общий интеграл. | т.к. <tex>du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -</tex> общий интеграл. | ||
− | {{Теорема|statement = Пусть <tex>M(x, y), N(x, y) \in C(G)</tex>, где G - односвязная область, и <tex>\frac{\partial M(x,y)}{\partial y}, \: \frac{\partial N(x, y)}{\partial x} \in C(G)</tex>; <br> Тогда <tex>Mdx + Ndy = du \: \Leftrightarrow \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>| proof = Рассмотрим первоначальное уравнение: <br> <tex> M(x,y)dx + N(x,y)dy = 0 </tex> <br> Перепишем его в виде: <tex> M(x,y)dx + N(x,y)dy \equiv du(x,y) = \dfrac{\partial u}{\partial x}dx + \dfrac{\partial u}{\partial y}dy. </tex> <br> Тогда видим, что <tex> \dfrac{\partial u}{\partial x} = M, \dfrac{\partial u}{\partial y} = N </tex> <br> Т.к.<tex> M,N </tex> - непрерывные на <tex> C </tex>, то давайте рассмотрим <tex> \dfrac{\partial^2 u}{\partial x \partial y} = \dfrac{\partial M}{\partial y} </tex> и <tex> \dfrac{\partial^2 u}{\partial y \partial x} = \dfrac{\partial N}{\partial x} </tex> <br> Левые части в этих равенствах равны, а следовательно равны и правые. Необходимость доказана. <br> Докажем теперь достаточность. <br> Предположим, что равенство частных производных выполняется, тогда рассмотрим следующую функцию: <br> <tex> a(x,y) = \int_{x_{0}}^{x}M(q, y)dq + \int_{y_{0}}^{y}N(x_{0}, z)dz </tex> <br> Найдем для нее частные производные по <tex> x </tex> и <tex> y </tex>: <br> <tex> \dfrac{\partial a}{\partial x} = M(x,y) </tex>, а дифференцируя по <tex> y </tex> и учитывая условие <tex> \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>, получаем : <br> <tex> \dfrac{\partial a}{\partial y} = \int_{x_{0}}^{x}\frac{\partial M(q, y)}{\partial y}dq + N(x_0, y) = N(x,y) - N(x_0,y) + N(x_0,y) = N(x,y) </tex> , достаточность доказана, т.к. <tex> a(x,y) = u(x,y) | + | {{Теорема|statement = Пусть <tex>M(x, y), N(x, y) \in C(G)</tex>, где G - односвязная область, и <tex>\frac{\partial M(x,y)}{\partial y}, \: \frac{\partial N(x, y)}{\partial x} \in C(G)</tex>; <br> Тогда <tex>Mdx + Ndy = du \: \Leftrightarrow \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>| proof = Рассмотрим первоначальное уравнение: <br> <tex> M(x,y)dx + N(x,y)dy = 0 </tex> <br> Перепишем его в виде: <tex> M(x,y)dx + N(x,y)dy \equiv du(x,y) = \dfrac{\partial u}{\partial x}dx + \dfrac{\partial u}{\partial y}dy. </tex> <br> Тогда видим, что <tex> \dfrac{\partial u}{\partial x} = M, \dfrac{\partial u}{\partial y} = N </tex> <br> Т.к.<tex> M,N </tex> - непрерывные на <tex> C </tex>, то давайте рассмотрим <tex> \dfrac{\partial^2 u}{\partial x \partial y} = \dfrac{\partial M}{\partial y} </tex> и <tex> \dfrac{\partial^2 u}{\partial y \partial x} = \dfrac{\partial N}{\partial x} </tex> <br> Левые части в этих равенствах равны, а следовательно равны и правые. Необходимость доказана. <br> Докажем теперь достаточность. <br> Предположим, что равенство частных производных выполняется, тогда рассмотрим следующую функцию: <br> <tex> a(x,y) = \int_{x_{0}}^{x}M(q, y)dq + \int_{y_{0}}^{y}N(x_{0}, z)dz </tex> <br> Найдем для нее частные производные по <tex> x </tex> и <tex> y </tex>: <br> <tex> \dfrac{\partial a}{\partial x} = M(x,y) </tex>, а дифференцируя по <tex> y </tex> и учитывая условие <tex> \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>, получаем : <br> <tex> \dfrac{\partial a}{\partial y} = \int_{x_{0}}^{x}\frac{\partial M(q, y)}{\partial y}dq + N(x_0, y) = N(x,y) - N(x_0,y) + N(x_0,y) = N(x,y) </tex> , достаточность доказана, т.к. <tex> a(x,y) = u(x,y) </tex> - общий интеграл . }} |
<b>Решение:</b> <tex>u(x, y) = \int_{x_{0}}^{x}M(x, y)dx + \int_{y_{0}}^{y}N(x_{0}, y)dy = C \: - </tex> Общее решение. | <b>Решение:</b> <tex>u(x, y) = \int_{x_{0}}^{x}M(x, y)dx + \int_{y_{0}}^{y}N(x_{0}, y)dy = C \: - </tex> Общее решение. | ||
Версия 13:53, 1 декабря 2015
Содержание
- 1 Уравнение с разделенными переменными
- 2 Уравнение с разделяемыми переменными
- 3 Однородные уравнения
- 4 Уравнения приводящиеся к однородным
- 5 Линейное уравнение первого порядка
- 6 Уравнение в полных дифференциалах
- 7 Уравнение, приводящееся к уравнению в полных дифференциалах
- 8 Уравнение Бернулли
- 9 Уравнение Риккати
- 10 Уравнения 1-го порядка не разрешенные относительно 1-й производной
Уравнение с разделенными переменными
Определение: |
уравнение вида | называется уравнением с разделенными переменными
Решение:
далее интегрируем правую и левую частиУравнение с разделяемыми переменными
Определение: |
уравнение вида | называется уравнением с разделяемыми переменными
Решение: (2) разделим на
и оно сведется к (1). в случае = 0 могут существовать особые решения.Однородные уравнения
Определение: |
уравнение вида | , где M и N - однородные функции одного измерения, называется однородным уравнением
Определение: |
однородная функция измерения n |
Решение: произвести замену
Определение: |
- один из видов однородного уравнения. |
Уравнения приводящиеся к однородным
Определение: |
уравнение вида | называется уравнением приводящимся к однородному
Утверждение: |
Решением уравнения является:
1)
Тогда получаем однородное уравнение. 2) |
Докажем 1), второй доказывается аналогично.
Подставим замену: |
Линейное уравнение первого порядка
Определение: |
уравнение вида | называется линейным уравнением порядка
Определение: |
Если | , то уравнение называется однородным линейным уравнением порядка
Способ решения методом Бернулли
Пусть
, тогда:
, назовем это уравнение
Пусть
таково, что:
Тогда:
. Домножим на . Отсюда получаем:
Пусть
. Тогда из получаем:
. Тогда
Способ решения методом Лагранжа
Рассмотрим:
Рассмотрим общее однородное(O.O) и общее неоднородное решение(O.H):
(из док-ва Бернулли)Пусть:
Способ решения методом Игоря Сушенцева
Запомнить формулу:
Уравнение в полных дифференциалах
Определение: |
Уравнение вида: | называется уравнением в полных дифференциалах, если
т.к.
общий интеграл.Теорема: |
Пусть , где G - односвязная область, и ; Тогда |
Доказательство: |
Рассмотрим первоначальное уравнение: Перепишем его в виде: Тогда видим, что Т.к. - непрерывные на , то давайте рассмотрим и Левые части в этих равенствах равны, а следовательно равны и правые. Необходимость доказана. Докажем теперь достаточность. Предположим, что равенство частных производных выполняется, тогда рассмотрим следующую функцию: Найдем для нее частные производные по и : , а дифференцируя по и учитывая условие , получаем : , достаточность доказана, т.к. - общий интеграл . |
Решение:
Общее решение.Уравнение, приводящееся к уравнению в полных дифференциалах
в условиях предыдущего определения, но
Утверждение: |
Пусть |
Пусть |
только как решать все равно не понятно.
Но.
Если зависит только от x или только от y, можно выразить ее в явном виде:
Уравнение Бернулли
Определение: |
уравнение вида | , называется уравнением Бернулли.
Решение:
, пусть
линейное относительно z уравнение.
Уравнение Риккати
Определение: |
Уравнение вида | , где называется уравнением Риккати
Решение:
Пусть частное решение уравнения (9), тогда
уравнение (8)
Уравнения 1-го порядка не разрешенные относительно 1-й производной
x явно зависит от y'
Решение:
Пусть
Перейдем к параметрической системе:
y явно зависит от y'
Решение:
Пусть
Переходим к системе:
уравнение Лагранжа
Определение: |
уравнение вида | , называется уравнением Лагранжа
Решение:
Переходим к системе:
Уравнение Клеро
Определение: |
уравнение вида | , называется уравнением Клеро
Решение:
Пусть
Тогда либо , либо
— общее решение.