Модуль непрерывности функции — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(добавлена часть про модуль непрерывности функции)
(minor fixes)
Строка 83: Строка 83:
 
:<tex>\omega^* \in \Omega^*: \omega(f, h) \le \omega^*(h) \ \forall h \ge 0</tex>.
 
:<tex>\omega^* \in \Omega^*: \omega(f, h) \le \omega^*(h) \ \forall h \ge 0</tex>.
  
Опеределим <tex>\omega^*(f, h) = \inf\limits_{\omega^* \in \Omega^*(f)} \omega^*(h)</tex>, где <tex>\Omega^*(f)</tex> - класс выпуклых мажорант функции <tex>f</tex> (то есть, все те модули непрерывности, удовлетворяющие написанному выше неравенству).
+
Опеределим <tex>\omega^*(f, h) = \inf\limits_{\omega^* \in \Omega^*(f)} \omega^*(h)</tex>, где <tex>\Omega^*(f)</tex> - класс выпуклых мажорант функции <tex>f</tex> (то есть, все модули непрерывности, удовлетворяющие написанному выше неравенству).
  
 
Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции <tex>f</tex>.
 
Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции <tex>f</tex>.
  
 
По доказанной выше теореме получаем следующее следствие:
 
По доказанной выше теореме получаем следующее следствие:
:<tex>\omega(f, \lambda h) \le \omega^* (f, \lambda h) \le (1 + \lambda) \ \omega(f, h) \ \forall\lambda, h \ge 0</tex>, а также:
+
:<tex>\omega(f, \lambda h) \le \omega^* (f, \lambda h) \le (1 + \lambda)\omega(f, h) \ \forall\lambda, h \ge 0</tex>, а также:
 
:<tex>\omega(f, h) \le \omega^* (f, h) \le 2 \omega(f, h)</tex>
 
:<tex>\omega(f, h) \le \omega^* (f, h) \le 2 \omega(f, h)</tex>
  
 
[[Категория:Математический анализ 1 курс]]
 
[[Категория:Математический анализ 1 курс]]

Версия 06:58, 20 ноября 2010

Эта статья находится в разработке!


Определение:
Функция [math]\omega: \mathbb{R}^+ \rightarrow \mathbb{R}^+[/math] называется модулем непрерывности, если:
  1. [math]\omega (0) = 0 = \lim \limits_{t \to +0} \,\omega(t)[/math]
  2. [math]\omega (t)[/math] не убывает
  3. [math]\omega (t_1 + t_2) \le \omega(t_1) + \omega(t_2)[/math] (полуаддитивность)


Свойства модулей непрерывности

1) [math]\forall n \in \mathbb{N}[/math] верно [math] \omega (nt) \le n \omega (t)[/math]
Доказательство ведется по индукции. Для [math]n = 1[/math] неравенство тривиально. Пусть утверждение верно для [math]n[/math]. Тогда [math]\omega((n + 1) t)\:\:=\:\:\omega(nt + t)\:\:\le\:\:\omega(nt) + \omega(t)\:\:\le\:\:n \omega(t) + \omega(t)\:\:=\:\:(n + 1) \omega (t)[/math], ч. т. д.

2) [math]\forall \lambda \gt 0[/math] верно [math]\omega(\lambda t) \le (1 + \lambda) \omega (t)[/math]
Доказательство: [math]\lambda \le \lfloor\lambda\rfloor + 1[/math][math]\omega(\lambda t)\:\:\le\:\:\omega((\lfloor\lambda\rfloor + 1) t)\:\:\le\:\:(\lfloor\lambda\rfloor + 1)\omega (t)\:\:\le\:\:(1 + \lambda) \omega (t)[/math]

3) Пусть для некоторой функции [math]\omega[/math] выполняются аксиомы 1 и 2 определения, и функция [math]\frac{\omega(t)}t[/math] убывает. Тогда [math]\omega[/math] - модуль непрерывности.
Видно, что треубется доказать только полуаддитивность. Т. к. [math]t_1, t_2 \lt t_1 + t_2[/math], то [math]\frac{\omega (t_1)}{t_1}, \frac{\omega(t_2)}{t_2} \ge \frac{\omega(t_1 + t_2)}{t_1 + t_2}[/math]. Тогда [math]\omega(t_1) + \omega(t_2) = t_1 \cdot \frac{\omega(t_1)}{t_1} + t_2 \cdot \frac{\omega(t_2)}{t_2} \ge t_1 \cdot \frac{\omega(t_1 + t_2)}{t_1 + t_2} + t_2 \cdot \frac{\omega(t_1 + t_2)}{t_1 + t_2} = \omega(t_1 + t_2) [/math].

4) Пусть [math]\omega[/math] удовлетворяет аксиомам 1 и 2 определения и является выпуклой вверх. Тогда [math]\omega[/math] - модуль непрерывности.
Докажем, опираясь на пункт 3. Покажем, что [math]\frac{\omega(t)}{t}[/math] убывает.
[math]0 \lt t_1 \lt t_2[/math], [math]t_1 = \left(1 - \frac{t_1}{t_2}\right) \cdot 0 + \frac{t_1}{t_2} \cdot t_2[/math] - выпуклая комбинация 0 и [math]t_2[/math].
Из выпуклости следует: [math]\omega(t_1) \ge \left( 1 - \frac{t_1}{t_2} \right) \cdot \omega(0) + \frac{t_1}{t_2} \cdot \omega(t_2)[/math]. Но [math]\omega(0) = 0[/math], следовательно, [math]\frac{\omega(t_1)}{t_1} \ge \frac{\omega(t_2)}{t_2}[/math], то есть, функция [math]\frac{\omega(t)}{t}[/math] является убывающей.

Примеры

По свойству четыре видно, что можно построить сколь угодно много модулей непрерывности. Например, [math]\omega (t) = \frac{t}{t + 1}[/math] является модулем непрерывности.
[math]\omega'(t) = \frac{(1 + t) - t}{(t + 1)^2} = \frac{1}{(1 + t)^2} \gt 0[/math] - функция возрастает.
[math]\omega''(t) = -\frac{2}{(t + 1)^3} \lt 0[/math] - функция является выпуклой вверх.

Из этого факта следует неравенство [math]\frac{t_1 + t_2}{1 + t_1 + t_2} \leq \frac{t_1}{1 + t_1} + \frac{t_2}{1 + t_2}[/math]

Теорема о выпуклом модуле непрерывности

Класс модулей непрерывности обозначим [math]\Omega[/math]. Класс выпуклых вверх модулей непрерывности обозначим [math]\Omega^*[/math].

Важное значение имеет теорема о выпуклом модуле непрерывности, которая основывается на следующем факте:

Утверждение:
Пусть имеется семейство выпуклых функций [math]F_\alpha(t), \alpha \in A[/math]. Тогда [math]f(t) = \inf\limits_{\alpha \in A} f_{\alpha} (t)[/math] — также выпуклая функция.
[math]\triangleright[/math]

Требуется показать, что:

[math]\beta f(t_1) + (1 - \beta) f(t_2) \le f(\beta t_1 + (1 - \beta) t_2), \ \beta \in [0; 1][/math]

Так как все функции семейства выпуклы вверх, то для любого [math]\alpha \in A[/math] верно:

[math]\beta f_{\alpha}(t_1) + (1 - \beta) f_{\alpha}(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)[/math].

Но по определению [math]f(t) \le f_{\alpha}(t)[/math], следовательно,

[math]\beta f(t_1) + (1 - \beta) f(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)[/math].
Переходя в правой части неравенства к нижней грани множества [math]F[/math], получаем искомое неравенство.
[math]\triangleleft[/math]
Теорема (о выпуклом модуле непрерывности):
Пусть [math]\omega \in \Omega[/math]. Тогда существует [math]\omega^* \in \Omega^*[/math] такая, что [math]\forall \lambda, t \ge 0[/math]
[math]\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \omega(t)[/math]
Доказательство:
[math]\triangleright[/math]

По свойству 2 имеем [math]\omega(\lambda t) \le (1 + \lambda) \omega (t)[/math] для всех [math]\lambda[/math] и [math]t \geq 0[/math]. Обозначим [math]u = \lambda t[/math], тогда [math]\lambda = \frac ut[/math].

Перепишем равенство : [math]\omega(u) \le (1 + \frac ut) \omega (t)[/math]. Определим теперь функцию [math]\omega^*(u) = \inf\limits_{t \gt 0} (1 + \frac ut)\omega(t)[/math]. Рассмотрим семейство функций [math] \tilde \omega(u)_t = (1 + \frac ut)\omega(t), t \gt 0[/math]. Каждая функция из этого семейства выпукла как линейная. Но тогда [math]\omega^*(u)[/math] выпукла вверх по доказанному выше факту.

Докажем теперь, что [math]\omega^*(u)[/math] - модуль непрерывности. Действительно,

  1. [math]\omega^*[/math] выпукла вверх
  2. [math]\omega^*(0) = \inf\limits_{t \gt 0}{\omega(t)} = 0[/math] (т. к. [math]\lim \limits_{t \to +0} \,\omega(t) = 0[/math] )
  3. [math]\omega^*[/math] не убывает. В самом деле, [math]u_1 \leq u_2 \Rightarrow (1 + \frac{u_1}t)\omega(t) \leq (1 + \frac{u_2}t)\omega(t)[/math]. Переходя к инфимумам обеих частей последнего неравенства, получаем [math]u_1 \leq u_2 \Rightarrow \omega^*(u_1) \leq \omega^*(u_2)[/math].

Еще раз вспомним свойство № 2 модулей непрерывности : [math]\omega(u) \le (1 + \frac ut) \omega (t)[/math]. Рассматривая точные нижние грани обеих частей и используя определение ф-ции [math]\omega^*(u)[/math], получим требуемые в условии теоремы неравенства.

Итак, построенная нами функция [math]\omega^*(t)[/math] является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам.
[math]\triangleleft[/math]

Модуль непрерывности функции

Пусть [math]f[/math] - функция, непрерывная на [math][a; b][/math]. Пусть [math]h \ge 0[/math]. Положим

[math]\omega(f, h) = \sup\limits_{|x'' - x'| \le h}|f(x'') - f(x')|[/math].

Можно проверить, что представленная функция является модулем непрерывности. В силу построения такая функция называется модулем непрерывности функции [math]f[/math].

Рассмотрим множество выпуклых вверх модулей непрерывности, мажорирующих модуль непрерывности функции [math]f[/math]:

[math]\omega^* \in \Omega^*: \omega(f, h) \le \omega^*(h) \ \forall h \ge 0[/math].

Опеределим [math]\omega^*(f, h) = \inf\limits_{\omega^* \in \Omega^*(f)} \omega^*(h)[/math], где [math]\Omega^*(f)[/math] - класс выпуклых мажорант функции [math]f[/math] (то есть, все модули непрерывности, удовлетворяющие написанному выше неравенству).

Очевидно, что мы получаем выпуклый вверх модуль непрерывности. Его принято называть выпуклым модулем непрерывности функции [math]f[/math].

По доказанной выше теореме получаем следующее следствие:

[math]\omega(f, \lambda h) \le \omega^* (f, \lambda h) \le (1 + \lambda)\omega(f, h) \ \forall\lambda, h \ge 0[/math], а также:
[math]\omega(f, h) \le \omega^* (f, h) \le 2 \omega(f, h)[/math]