Коды Прюфера — различия между версиями
Строка 54: | Строка 54: | ||
==См. также== | ==См. также== | ||
− | * [[Матрица Кирхгофа]] | + | *[[Связь матрицы Кирхгофа и матрицы инцидентности]] |
+ | *[[Матрица Кирхгофа]] | ||
+ | *[[Количество помеченных деревьев]] | ||
+ | *[[Подсчет числа остовных деревьев с помощью матрицы Кирхгофа]] | ||
+ | |||
== Источники информации == | == Источники информации == | ||
− | + | # [http://www.intuit.ru/department/algorithms/graphsuse/11/2.html Университет INTUIT | Представление с помощью списка ребер и кода Прюфера] | |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Остовные деревья ]] | [[Категория: Остовные деревья ]] | ||
[[Категория: Свойства остовных деревьев ]] | [[Категория: Свойства остовных деревьев ]] |
Версия 02:03, 30 декабря 2015
Содержание
Алгоритм построения кодов Прюфера
Кодирование Прюфера переводит помеченные деревья порядка в последовательность чисел от до по алгоритму:
Пока количество вершин больше двух:
- Выбирается лист с минимальным номером.
- В код Прюфера добавляется номер вершины, смежной с .
- Вершина и инцидентное ей ребро удаляются из дерева.
Полученная последовательность называется кодом Прюфера (англ. Codes Priifer) для заданного дерева.
Лемма: |
Номер вершины встречается в коде Прюфера тогда и только тогда, когда не является листом, причём встречается этот номер к коде дерева в точности раз. |
Доказательство: |
|
Лемма: |
По любой последовательности длины из чисел от до можно построить помеченное дерево,
для которого эта последовательность является кодом Прюфера. |
Доказательство: |
Доказательство проведем по индукции по числу верно. Индукционный переход: Пусть для числа верно, построим доказательство для :Пусть у нас есть последовательность: Выберем минимальное число не лежащее в . По предыдущей лемме вершина, которую мы удалили первой. Соединим и ребром. Выкинем из последовательности число . Перенумеруем вершины, для всех заменим на . А теперь мы можем применить предположение индукции. |
Теорема: |
Кодирование Прюфера задаёт биекцию между множествами помеченных деревьев порядка и последовательностями длиной из чисел от до |
Доказательство: |
|
Следствием из этой теоремы является формула Кэли.
Пример построения кода Прюфера
Пример декодирования кода Прюфера
См. также
- Связь матрицы Кирхгофа и матрицы инцидентности
- Матрица Кирхгофа
- Количество помеченных деревьев
- Подсчет числа остовных деревьев с помощью матрицы Кирхгофа