Теорема Гуйя-Ури — различия между версиями
Анна (обсуждение | вклад) (Новая страница: «= Теорема Гуйя-Ури = {{Определение |definition= Ориентированный сильно связный граф называется...») |
Анна (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Ориентированный сильно связный граф называется '''орсвязаными'''.}} | Ориентированный сильно связный граф называется '''орсвязаными'''.}} | ||
+ | |||
== Лемма о длине цикла в ориентированном графе == | == Лемма о длине цикла в ориентированном графе == | ||
{{Лемма | {{Лемма | ||
Строка 32: | Строка 31: | ||
Так как <tex>P</tex> {{---}} самый длинный путь в <tex>G</tex>, ни одна вершина которого не принадлежит <tex>C</tex>, каждая вершина, ребро из которой приходит в <tex>v_0</tex>, лежит либо на <tex>P</tex>, либо на <tex>C</tex>. Так как <tex>deg^{in}(v_0) \geqslant n/2</tex>, то <tex>a + l \geqslant n/2</tex>, следовательно <tex>deg^{out}(v_l) \leqslant (n - 1) - (a + l) \leqslant (n - 1) - n/2 = n/2 - 1</tex>. Получаем противоречие с условием. Таким образом, предположение неверно, а значит, теорема доказана. | Так как <tex>P</tex> {{---}} самый длинный путь в <tex>G</tex>, ни одна вершина которого не принадлежит <tex>C</tex>, каждая вершина, ребро из которой приходит в <tex>v_0</tex>, лежит либо на <tex>P</tex>, либо на <tex>C</tex>. Так как <tex>deg^{in}(v_0) \geqslant n/2</tex>, то <tex>a + l \geqslant n/2</tex>, следовательно <tex>deg^{out}(v_l) \leqslant (n - 1) - (a + l) \leqslant (n - 1) - n/2 = n/2 - 1</tex>. Получаем противоречие с условием. Таким образом, предположение неверно, а значит, теорема доказана. | ||
}} | }} | ||
+ | |||
+ | == См. также == | ||
+ | * [[Теорема Дирака]] | ||
+ | |||
+ | == Источники информации == | ||
+ | * Gary Chartrand, Linda Lesniak, Ping Zhang (2010). ''Graphs & Digraphs, Fifth Edition'', chapter 4. ISBN 9781439895184. | ||
+ | * Д. В. Карпов. ''Теория графов''. | ||
+ | |||
+ | [[Категория: Алгоритмы и структуры данных]] | ||
+ | [[Категория: Обходы графов]] | ||
+ | [[Категория: Гамильтоновы графы]] |
Версия 11:24, 2 января 2016
Определение: |
Ориентированный сильно связный граф называется орсвязаными. |
Содержание
Лемма о длине цикла в ориентированном графе
Лемма (о длине цикла в ориентированном графе): |
Пусть — произвольный ориентированный граф и для каждой вершины выполняется . Если , то в графе существует простой цикл длины хотя бы . |
Доказательство: |
Рассмотрим путь максимальной длины | . Из последней вершины выходит хотя бы ребро в вершины, отличные от . Так как путь максимальный, то продлить его нельзя, а значит, что из выходят ребра только в вершины, содержащиеся в пути . Пусть — вершина с наименьшим номером, в которую входит ребро из . Тогда во множество входят не менее ребер, выходящих из . То есть в это множестве хотя бы вершин. Значит, в цикле не менее вершины.
Теорема Гуйя-Ури
Теорема (Гуйя-Ури, Ghouila-Houri): |
Если — сильно связный ориентированный граф c вершинами и для каждой выполняется
|
Доказательство: |
Будем доказывать теорему от противного. Предположим, что это не так. Очевидно, что условие теоремы выполняется при |
См. также
Источники информации
- Gary Chartrand, Linda Lesniak, Ping Zhang (2010). Graphs & Digraphs, Fifth Edition, chapter 4. ISBN 9781439895184.
- Д. В. Карпов. Теория графов.