Поиск в матрице — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{Задача |definition = Задана двумерная матрица, состоящая из n строк и m столбцов. Необходимо на...»)
 
Строка 2: Строка 2:
 
|definition = Задана двумерная матрица, состоящая из n строк и m столбцов. Необходимо найти расположение указанного элемента в матрице или определить, что данный элемент в матрице отсутствует.  
 
|definition = Задана двумерная матрица, состоящая из n строк и m столбцов. Необходимо найти расположение указанного элемента в матрице или определить, что данный элемент в матрице отсутствует.  
 
}}
 
}}
 +
 +
 +
== Решение за O(n<tex>\cdot</tex>m) ==
 +
Для начала рассмотрим наивный алгоритм поиска элемента. В каждой строке исходной матрицы запускаем линейный поиск, если находим элемент, то возвращаем его координаты <tex>(row, col)</tex>. Время работы — <tex>O(n \cdot m)</tex>.
 +
 +
 +
== Решение за O(n<tex>\cdot</tex>log(m)) ==
 +
Данный способ решения использует наивное решение за <math>n \cdot m</math>, улучшенное с помощью [[Целочисленный двоичный поиск|двоичного поиска]]. Для этого в каждой строке запускается двоичный поиск. Время работы — <tex>O(n \cdot log(m)</tex>.
 +
 +
'''Замечание'''
 +
 +
Время работы может быть улучшено до <tex>O(min(n, m) \cdot log(max(n \cdot m))</tex>. Для этого необходимо модифицировать алгоритм так, чтобы в том случае, если столбцов больше чем строк, он бы запускал двоичный поиск по строкам, если строк больше — наоборот.

Версия 14:45, 10 января 2016

Задача:
Задана двумерная матрица, состоящая из n строк и m столбцов. Необходимо найти расположение указанного элемента в матрице или определить, что данный элемент в матрице отсутствует.


Решение за O(n[math]\cdot[/math]m)

Для начала рассмотрим наивный алгоритм поиска элемента. В каждой строке исходной матрицы запускаем линейный поиск, если находим элемент, то возвращаем его координаты [math](row, col)[/math]. Время работы — [math]O(n \cdot m)[/math].


Решение за O(n[math]\cdot[/math]log(m))

Данный способ решения использует наивное решение за [math]n \cdot m[/math], улучшенное с помощью двоичного поиска. Для этого в каждой строке запускается двоичный поиск. Время работы — [math]O(n \cdot log(m)[/math].

Замечание

Время работы может быть улучшено до [math]O(min(n, m) \cdot log(max(n \cdot m))[/math]. Для этого необходимо модифицировать алгоритм так, чтобы в том случае, если столбцов больше чем строк, он бы запускал двоичный поиск по строкам, если строк больше — наоборот.