Игра «Жизнь» — различия между версиями
Mariashka (обсуждение | вклад) м |
Mariashka (обсуждение | вклад) |
||
Строка 26: | Строка 26: | ||
<br> | <br> | ||
Доказательство строится на том, что простая логика, необходимая для построения МТ, может быть построена в игре "Жизнь": | Доказательство строится на том, что простая логика, необходимая для построения МТ, может быть построена в игре "Жизнь": | ||
− | * детерминированный конечный автомат, | + | * [[Детерминированные_конечные_автоматы|детерминированный конечный автомат]], |
* ленту(с ячейками памяти), | * ленту(с ячейками памяти), | ||
* головку записи-чтения. | * головку записи-чтения. | ||
Строка 54: | Строка 54: | ||
<br> | <br> | ||
Если показать, что мы можем построить в игре "Жизнь" любую булеву функцию, то мы сможем построить булеву функцию УМТ. | Если показать, что мы можем построить в игре "Жизнь" любую булеву функцию, то мы сможем построить булеву функцию УМТ. | ||
− | + | ||
+ | Так <tex>NAND</tex> является [[Полные системы функций. Теорема Поста о полной системе функций |полной системой]], то достаточно построить <tex>NOT</tex> и <tex>AND</tex>. | ||
===Построение NOT=== | ===Построение NOT=== | ||
Рассмотрим поток данных, состоящий из планеров. Наличие планера {{---}} <tex>1</tex>, отсутствие {{---}} <tex>0</tex>. Добавим поток планеров, состоящий только из <tex>1</tex>. При столкновении планеры исчезают, следовательно на месте <tex>1</tex> образуется <tex>0</tex> и наоборот.<br> | Рассмотрим поток данных, состоящий из планеров. Наличие планера {{---}} <tex>1</tex>, отсутствие {{---}} <tex>0</tex>. Добавим поток планеров, состоящий только из <tex>1</tex>. При столкновении планеры исчезают, следовательно на месте <tex>1</tex> образуется <tex>0</tex> и наоборот.<br> |
Версия 14:41, 13 января 2016
Игра «Жизнь» (англ. Conway's Game of Life) — клеточный автомат, придуманный английским математиком Джоном Конвеем в 1970.
Содержание
Правила
- Правило 1. Действие происходит на бесконечной плоскости, разделенной на клетки, которую можно иногда представить как зацикленную конечную.
- Правило 2. Каждая клетка может находиться в двух состояниях: быть живой или быть мёртвой.
- Правило 3. У каждой клетки соседей.
- Правило 4. Если клетка жива и у нее живых соседа, то она остается живой, иначе умирает.
- Правило 5. Если клетка мертва и у нее живых соседа, то она становится живой, иначе остается мертвой.
- Правило 6. Игра прекращается, если на поле не останется ни одной живой клетки.
- Правило 7. Игра прекращается, если при очередном шаге ни одна из клеток не меняет своего состояния.
- Правило 8. Игра прекращается, если конфигурация на очередном шаге в точности повторит себя же на одном из более ранних шагов.
Универсальность
Теорема: |
Игра «Жизнь» вычисляет то же множество функций, что и МТ. |
Доказательство: |
Для того, чтобы доказать этот факт, докажем возможность построения всех возможных машин Тьюринга.
Базовые конструкцииРассмотрим базовые конструкции необходимые для построения этих элементов МТ.
ПамятьЯчейки памяти можно построить с помощью стабильныx конструкций Булевы функцииЗаметим, что управляющая часть МТ считывает с ленты входную строчку и завершается, записав на ленту выходную строчку. Без ограничения общности, будем рассматривать бинарные строки. Следовательно, управляющая часть МТ есть булева функция.
Так полной системой, то достаточно построить и . являетсяПостроение NOTРассмотрим поток данных, состоящий из планеров. Наличие планера — Построение ANDСм. рисунок. Пусть |
См.также
- Rendell, P. (2014) Turing machine universality of the game of life. PhD, University of the West of England. Available from: http://eprints.uwe.ac.uk/22323