2SAT — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Алгоритм решения)
м (переименовал 2-SAT в 2SAT)
(нет различий)

Версия 19:03, 18 января 2016

Задача:
2-SAT (2-satisfiability) выполнимость функции — задача распределения аргументов в булевой КНФ функции, записанной в виде 2-КНФ (КНФ Крома), таким образом, чтобы результат данной функции был равен [math] 1 [/math].


Алгоритм решения

Рассмотрим любой дизъюнкт функции: [math] a \vee b [/math]. Несложно заметить, что это равнозначно записи [math](\overline a \to b \wedge b \to \overline a) [/math].

Построим ориентированный граф, где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: [math]\overline a \to b [/math] и [math] b \to \overline a [/math] для каждого дизъюнкта функции [math] a \vee b [/math].

Теорема:
Для того, чтобы данная задача [math]\mathrm 2SAT[/math] имела решение, необходимо и достаточно, чтобы для любой переменной [math] x [/math] из вершины [math] x [/math] нельзя достичь [math] \overline x [/math] и из вершины [math] \overline x [/math] нельзя достичь [math] x [/math] одновременно. [math](\overline x \to x \wedge x \to \overline x) [/math].
Доказательство:
[math]\triangleright[/math]

[math](\Rightarrow)[/math]Докажем достаточность: Пусть [math]\mathrm 2SAT[/math] имеет решение. Докажем, что не может быть такого, чтобы для любой переменной [math] x [/math] из вершины [math] x [/math] можно достичь [math] \overline x [/math] и из вершины [math] \overline x [/math] можно достичь [math] x [/math] одновременно. [math](\overline x \to x \wedge x \to \overline x) [/math]. Тогда чтобы из [math] \overline x [/math] достичь [math] x [/math] [math] (\overline x \to x [/math] было верным), [math] x [/math] должен быть равен [math] 1 [/math]. С другой стороны для того, чтобы из [math] x [/math] достичь [math] \overline x [/math] [math] (\overline x \to x [/math] было верным), [math] x [/math] должен быть равен 0. Отсюда следует противоречие.

[math](\Leftarrow)[/math]Докажем необходимость: Пусть для любой переменной [math] x [/math] из вершины [math] x [/math] нельзя достичь [math] \overline x [/math] и из вершины [math] \overline x [/math] нельзя достичь [math] x [/math] одновременно. Докажем, что этого достаточно, чтобы [math]\mathrm 2SAT[/math] имело решение. Пусть из [math] \overline x [/math] можно достичь [math] x [/math], но из вершины [math] x [/math] нельзя достичь [math] \overline x [/math]. Докажем, что из [math] x [/math] не достижимо такой [math] y [/math], что из [math] y [/math] достижимо [math] \overline y [/math]. (т.е. [math] x \to y \to \overline y (x = 1, y = 0)) [/math]. Если из [math] x \to y [/math], то [math] \overline x \vee y [/math], отсюда следует [math] \overline y \to \overline x [/math]. Тогда [math] x \to y \to \overline y \to \overline x [/math]. Следовательно [math] x \to \overline x [/math]. Противоречие.
[math]\triangleleft[/math]

Теперь мы можем собрать весь алгоритм воедино:

  1. Построим граф импликаций.
  2. Найдём в этом графе компоненты сильной связности за время [math]O(N + M)[/math], где [math] N [/math] - количество вершин в графе (количество переменных), а [math] M [/math] - количество ребер графа (удвоенное количество дизъюнктов).
  3. Пусть [math]comp[v][/math] — это номер компоненты сильной связности, которой принадлежит вершине [math]v[/math]. Проверим, что для каждой переменной [math]x[/math] вершины [math]x[/math] и [math]\overline x[/math] лежат в разных компонентах, т.е. [math]comp[x] \ne comp[\overline x][/math]. Если это условие не выполняется, то вернуть "решение не существует".
  4. Если [math]comp[x] \gt comp[\overline x][/math], то переменной [math]x[/math] выбираем значение [math] \mathtt true[/math], иначе - [math] \mathtt false[/math].

Компоненты сильной связности найдем за [math]O(N + M)[/math], затем проверим каждую из [math]N[/math] переменных за [math]O(N)[/math]. Следовательно асимптотика [math]O(N + M)[/math].

Примеры решения 2-SAT

Первый пример

Рассмотрим следующую функцию: [math] (a \vee b) \wedge (a \vee c) \wedge (\overline b \vee c) \wedge (\overline b \vee a) [/math]

Данная функция эквивалентна функции [math] \overline a \to b \wedge \overline b \to a \wedge \overline a \to c \wedge \overline c \to a \wedge b \to c \wedge \overline c \to \overline b \wedge \overline a \to \overline b \wedge a \to b [/math]

Построим граф и рассмотрим пути:

  • [math] \overline a \to b \to a [/math]
  • [math] \overline a \to \overline b \to a [/math]
  • [math] \overline c \to a [/math]
  • [math] a \to c [/math]
  • [math] \overline a \to b \to c [/math]

Т.к. [math] \overline a \to a [/math], то [math] a = 1, \overline a = 0 [/math]

Т.к. [math] a \to c [/math] и [math] a = 1 [/math], то [math] c = 1, \overline c = 0 [/math]

Значения [math] b [/math] может быть любым, т.к. все вершины, из которых можно добраться в [math] b [/math] имеют значение ноль

Ответ: [math] a = 1, b = 0, c = 1 [/math] или [math] a = 1, b = 1, c = 1 [/math]

Второй пример

Рассмотрим следующую функцию: [math] (\overline a \vee c) \wedge (\overline c \vee \overline a) \wedge (a \vee b) \wedge (\overline b \vee a) [/math]

Данная функция эквивалентна функции [math] a \to c \wedge \overline c \to \overline a \wedge c \to \overline a \wedge a \to \overline c \wedge \overline a \to b \wedge \overline b \to a \wedge b \to a \wedge \overline b \to \overline a [/math]

Заметим следующий путь: [math] a \to c \to \overline a \to b \to a [/math]

Отсюда следует, что [math] a \to \overline a \to a [/math]

Следовательно по ранее доказанной теореме, у данной функции решений нет

Ответ: Решений нет


Использование 2-SAT

См. также

Источники информации