Матричный умножитель — различия между версиями
(→Вычисление частичных произведений) |
(→См так же) |
||
Строка 62: | Строка 62: | ||
− | == См | + | == См также == |
*[http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%A3%D0%BE%D0%BB%D0%BB%D0%B5%D1%81%D0%B0 Дерево Уоллеса] | *[http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%A3%D0%BE%D0%BB%D0%BB%D0%B5%D1%81%D0%B0 Дерево Уоллеса] | ||
--[[Участник:Kirill Antonov|Kirill Antonov]] 23:55, 18 января 2016 (GST) | --[[Участник:Kirill Antonov|Kirill Antonov]] 23:55, 18 января 2016 (GST) |
Версия 01:27, 19 января 2016
Содержание
Принцип работы
Умножение в бинарной системе
Умножение в бинарной системе счисления происходит точно так же, как в десятичной — по схеме умножения столбиком. Если множимое —
разрядное, а множитель — разрядный, то для формирования произведения требуется вычислить частичных произведений и сложить их между собой.Вычисление частичных произведений
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами
— конъюнкторами. Каждое частичное произведение ( ) — это результат выполнения логических операции ( между текущим разрядом множителя и всеми разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:
Суммирование частичных произведений
На этом этапе происходит сложение всех частичных произведений
.Схема
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх — разрядных чисел приведена на рисунке. Формирование частичных произведений осуществляется посредством логических элементов
. Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. Разрядность результата — определяется разрядностью множителя — и множимого — :.
Все конъюнкторы работают параллельно.
Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора.
В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом.
Время выполнения операции умножения определяется временем распространения переносов до выходного разряда .
Матричный умножитель — Binary multiplier
Если внимательно посмотреть на схему умножителя, то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа
и числа . В точках пересечения этих проводников находятся логические элементы . Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.Схемная сложность
Частичные произведения вычисляются за
шагов. Сложение с вычислением переносов включает шаг. Последнее сложение можно выполнить за .В итоге суммарное время работы:
Время работы схемы можно сократить, если сумматоры располагать не последовательно друг за другом, как это предполагается алгоритмом, приведенным на первом рисунке (общая схема), а суммировать частичные произведения попарно, затем суммировать пары частичных произведений и т.д. В этом случае время выполнения операции умножения значительно сократится.
Особенно заметен выигрыш в быстродействии при построении многоразрядных умножителей, однако ничего не бывает бесплатно. В обмен на быстродействие придётся заплатить увеличением разрядности сумматоров, а значит сложностью схемы.
Есть и более быстрые способы умножения двух чисел, например умножение с помощью дерева Уоллеса, которое работает .
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р.. Алгоритмы: построение и анализ = Introduction to Algorithms / Пер. с англ. под ред. А. Шеня. — М.: МЦНМО, 2000. — 960 с. — ISBN 5-900916-37-5
См также
--Kirill Antonov 23:55, 18 января 2016 (GST)