Венгерский алгоритм решения задачи о назначениях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Алгоритм за O(n^3))
Строка 1: Строка 1:
Венгерский алгоритм — алгоритм, решающий задачу о назначениях за полиномиальное время. Оригинальная версия была придумана и разработана Х. Куном в 1955 году и имела асимптотику <tex> O(n^4) </tex>, но позже Эдмонс и Карп (а также, независимо от них, Томидзава) показали, что можно улучшить ее до <tex> O(n^3) </tex>.
+
'''Венгерский алгоритм''' (англ. '''Hungarian algorithm''') — алгоритм, решающий задачу о назначениях за полиномиальное время. Оригинальная версия была придумана и разработана Х. Куном в 1955 году и имела асимптотику <tex> O(n^4) </tex>, но позже Эдмонс и Карп (а также, независимо от них, Томидзава) показали, что можно улучшить ее до <tex> O(n^3) </tex>.
 
+
{{Задача
== Постановка задачи ==
+
|definition = Пусть дан [[Основные определения теории графов|взвешенный полный двудольный граф]] c целыми весами ребер <tex> K_{n, n} </tex>, нужно найти в нем [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях|полное паросочетание минимального веса]]. Вес паросочетания определяется как сумма весов его ребер. Далее будем обозначать левую и правую доли графа за <tex> X </tex> и <tex> Y </tex> соответственно, вес ребра <tex> xy </tex> — как <tex> c(xy) </tex>.
 
+
}}
Пусть дан [[Основные определения теории графов|взвешенный полный двудольный граф]] c целыми весами ребер <tex> K_{n, n} </tex>, нужно найти в нем [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях|полное паросочетание минимального веса]]. Вес [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях|паросочетания]] определяется как сумма весов его ребер. Далее будем обозначать левую и правую доли графа за <tex> X </tex> и <tex> Y </tex> соответственно, вес ребра <tex> xy </tex> — как <tex> c(xy) </tex>.
 
  
== Некоторые полезные утверждения ==
+
== Вспомогательные леммы ==
  
 
{{Лемма
 
{{Лемма
Строка 18: Строка 17:
 
{{Лемма
 
{{Лемма
 
|statement=
 
|statement=
Выделим в множествах <tex>X</tex> и <tex>Y</tex> подмножества <tex>X', Y'</tex>. Пусть <tex>d = \min \{c(xy)|\ x \in X \setminus X', y \in Y'\}</tex>. Прибавим <tex> d </tex> ко всем весам ребер, инцидентных вершинам из <tex>X'</tex>. Затем отнимем <tex> d </tex> от всех весов ребер, инцидентных вершинам из <tex>Y'</tex> (далее для краткости эта операция обозначается как <tex> X' \uparrow\downarrow Y' </tex>). Тогда:
+
Выделим в множествах <tex>X</tex> и <tex>Y</tex> подмножества <tex>X', Y'</tex>. Пусть <tex>d = \min \{c(xy) \mid x \in X \setminus X', y \in Y'\}</tex>. Прибавим <tex> d </tex> ко всем весам ребер, инцидентных вершинам из <tex>X'</tex>. Затем отнимем <tex> d </tex> от всех весов ребер, инцидентных вершинам из <tex>Y'</tex> (далее для краткости эта операция обозначается как <tex> X' \uparrow\downarrow Y' </tex>). Тогда:
 
# Веса всех ребер графа останутся неотрицательными.
 
# Веса всех ребер графа останутся неотрицательными.
 
# Веса ребер вида <tex>xy</tex>, где <tex>x \in X', y \in Y'</tex> или <tex>x \in X \backslash X', y \in Y \backslash Y'</tex>, не изменятся.
 
# Веса ребер вида <tex>xy</tex>, где <tex>x \in X', y \in Y'</tex> или <tex>x \in X \backslash X', y \in Y \backslash Y'</tex>, не изменятся.
Строка 72: Строка 71:
 
== Алгоритм за <tex>O(n^3)</tex> ==
 
== Алгоритм за <tex>O(n^3)</tex> ==
  
<tex> a[1 \dots n][1 \dots m] </tex> {{---}} прямоугольная входная матрица, где <tex> n \leq m </tex>. Матрица хранится в 1-индексации.
+
<tex> \mathtt{a[1 \dots n][1 \dots m]} </tex> {{---}} прямоугольная входная матрица, где <tex> \mathtt{n \leqslant m} </tex>. Матрица хранится в 1-индексации.
  
<tex> u[0 \dots n], v[0 \dots n] </tex> {{---}} массивы потенциалов. Изначально нулевые, что верно для матрицы, состоящей из 0 строк.
+
<tex> \mathtt{u[0 \dots n], v[0 \dots n]} </tex> {{---}} массивы потенциалов.
  
<tex> p[0 \dots m] </tex> {{---}} массив паросочетания. Для каждого стобца <tex> i = 0 \dots m </tex> он хранит номер соответствующей выбранной строки <tex> p[i] </tex> (или 0, если ничего не выбрано). Полагаем, что <tex> p[0] </tex> равно номеру рассматриваемой строки.
+
<tex> \mathtt{p[0 \dots m]} </tex> {{---}} массив паросочетания. Для каждого стобца <tex> \mathtt{i = 0 \dots m} </tex> он хранит номер соответствующей выбранной строки <tex> \mathtt{p[i]} </tex> (или 0, если ничего не выбрано). Полагаем, что <tex> \mathtt{p[0]} </tex> равно номеру рассматриваемой строки.
  
<tex> minv[1 \dots m] </tex> {{---}} массив, хранящий для каждого столбца j вспомогательные минимумы, необходимые для быстрого пересчета потенциала.
+
<tex> \mathtt{minv[1 \dots m]} </tex> {{---}} массив, хранящий для каждого столбца j вспомогательные минимумы, необходимые для быстрого пересчета потенциала.
  
  <tex> minv[j] = \min_{i \in Z_1}\{a[i][j] - u[i] - v[j]\} </tex>
+
  <tex> \mathtt{minv[j] = \min_{i \in Z_1}\{a[i][j] - u[i] - v[j]\}} </tex>
  
<tex> way[1 \dots m] </tex> {{---}} массив, содержащий информацию о том, где эти минимумы достигаются, чтобы мы могли впоследствии восстановить [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях|увеличивающую цепочку]].
+
<tex> \mathtt{way[1 \dots m]} </tex> {{---}} массив, содержащий информацию о том, где эти минимумы достигаются, чтобы мы могли впоследствии восстановить [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях|увеличивающую цепочку]].
  
 
  '''function''' hungarianAlgorithm(a):
 
  '''function''' hungarianAlgorithm(a):
Строка 89: Строка 88:
 
     p[0] = i
 
     p[0] = i
 
     j0 = 0
 
     j0 = 0
     '''for''' i = 0 '''to''' m + 1
+
     заполняем массивы minv {{---}} <tex> \infty </tex>, used {{---}} false
      minv[i] = <tex> \infty </tex>
 
      used[i] = false
 
 
     <font color=darkgreen>// ищем свободный столбец j0 </font>
 
     <font color=darkgreen>// ищем свободный столбец j0 </font>
 
     '''while''' true
 
     '''while''' true
Строка 125: Строка 122:
 
         '''break'''
 
         '''break'''
  
== Ссылки ==
+
== См. также ==
 +
 
 +
== Источники информации ==
 +
* Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — 2010, 368 стр.
 
* [http://ru.wikipedia.org/wiki/Венгерский_алгоритм Венгерский алготитм в Википедии]
 
* [http://ru.wikipedia.org/wiki/Венгерский_алгоритм Венгерский алготитм в Википедии]
 
* [http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/hungarian-2002 Визуализатор алгоритма]
 
* [http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/hungarian-2002 Визуализатор алгоритма]
 
* [http://acm.mipt.ru/twiki/bin/view/Algorithms/HungarianAlgorithmCPP?sortcol=5&table=2&up=0 Реализация венгерского алгоритма на C++]
 
* [http://acm.mipt.ru/twiki/bin/view/Algorithms/HungarianAlgorithmCPP?sortcol=5&table=2&up=0 Реализация венгерского алгоритма на C++]
 
* [http://e-maxx.ru/algo/assignment_hungary Венгерский алгоритм решения задачи о назначениях]
 
* [http://e-maxx.ru/algo/assignment_hungary Венгерский алгоритм решения задачи о назначениях]
 
== Литература ==
 
* Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — 2010, 368 стр.
 
  
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория: Задача о потоке минимальной стоимости]]
 
[[Категория: Задача о потоке минимальной стоимости]]

Версия 22:54, 25 января 2016

Венгерский алгоритм (англ. Hungarian algorithm) — алгоритм, решающий задачу о назначениях за полиномиальное время. Оригинальная версия была придумана и разработана Х. Куном в 1955 году и имела асимптотику [math] O(n^4) [/math], но позже Эдмонс и Карп (а также, независимо от них, Томидзава) показали, что можно улучшить ее до [math] O(n^3) [/math].

Задача:
Пусть дан взвешенный полный двудольный граф c целыми весами ребер [math] K_{n, n} [/math], нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер. Далее будем обозначать левую и правую доли графа за [math] X [/math] и [math] Y [/math] соответственно, вес ребра [math] xy [/math] — как [math] c(xy) [/math].


Вспомогательные леммы

Лемма:
Если веса всех ребер графа, инцидентных какой-либо вершине, изменить (увеличить или уменьшить) на одно и то же число, то в новом графе оптимальное паросочетание будет состоять из тех же ребер, что и в старом.
Доказательство:
[math]\triangleright[/math]
Полное паросочетание для каждой вершины содержит ровно одно ребро, инцидентное этой вершине. Указанная операция изменит на одно и то же число вес любого паросочетания. Значит, ребро, которое принадлежало оптимальному паросочетанию в старом графе, в новом графе тоже будет ему принадлежать.
[math]\triangleleft[/math]

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно этой лемме, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

Лемма:
Выделим в множествах [math]X[/math] и [math]Y[/math] подмножества [math]X', Y'[/math]. Пусть [math]d = \min \{c(xy) \mid x \in X \setminus X', y \in Y'\}[/math]. Прибавим [math] d [/math] ко всем весам ребер, инцидентных вершинам из [math]X'[/math]. Затем отнимем [math] d [/math] от всех весов ребер, инцидентных вершинам из [math]Y'[/math] (далее для краткости эта операция обозначается как [math] X' \uparrow\downarrow Y' [/math]). Тогда:
  1. Веса всех ребер графа останутся неотрицательными.
  2. Веса ребер вида [math]xy[/math], где [math]x \in X', y \in Y'[/math] или [math]x \in X \backslash X', y \in Y \backslash Y'[/math], не изменятся.
Доказательство:
[math]\triangleright[/math]

Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества [math] X' [/math] и [math] Y' [/math] состоят из первых элементов множеств [math] X [/math] и [math] Y [/math] соответственно (мы упорядочиваем множества по номерам вершин). Тогда вся матрица делится на 4 блока:

[math] Y' [/math] [math] Y \backslash Y' [/math]
[math] X' [/math] [math] A + d - d [/math] [math] C + d [/math]
[math] X \backslash X' [/math] [math] B - d [/math] [math] D [/math]
Веса группы [math] A [/math] будут сначала увеличены, а потом уменьшены на [math] d [/math], поэтому они не изменятся, веса группы [math] D [/math] вообще изменяться не будут. Все веса группы [math] B [/math] будут уменьшены на [math] d [/math], но [math] d [/math] — минимум среди этих весов, поэтому они останутся неотрицательными.
[math]\triangleleft[/math]
Лемма:
Если веса всех ребер графа неотрицательны и некоторое полное паросочетание состоит из ребер нулевого веса, то оно является оптимальным.
Доказательство:
[math]\triangleright[/math]
Действительно, паросочетание с какими-то другими весами ребер имеет больший вес и оптимальным не является.
[math]\triangleleft[/math]

Общий метод

Доказанные ранее утверждения позволяют придумать схему алгоритма, решающего задачу о назначениях: нужно найти полное паросочетание из ребер нулевого веса в графе, полученном из исходного преобразованиями, описанными в первых двух леммах.

Алгоритм, решающий задачу, работает с графом, как с матрицей весов.

  1. Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.
  2. Вычитаем из каждого столбца значение его минимального элемента. Теперь в каждом столбце есть хотя бы один нулевой элемент.
  3. Ищем в текущем графе полное паросочетание из ребер нулевого веса:
    • Если оно найдено, то желаемый результат достигнут, алгоритм закончен.
    • В противном случае, покроем нули матрицы весов минимальным количеством строк и столбцов (это не что иное, как нахождение минимального вершинного покрытия в двудольном графе). Пусть [math] X_c [/math] и [math] Y_c [/math] — множества вершин минимального вершинного покрытия из левой и правой долей (то есть, строк и столбцов) соответственно, тогда применим преобразование [math] X_c \uparrow\downarrow (Y \setminus Y_c) [/math]. Для этого преобразования [math] d [/math] будет минимумом по всем ребрам между [math] X \setminus X_c [/math] и [math] Y \setminus Y_c [/math], то есть, ребер нулевого веса здесь нет, поэтому, после его выполнения в матрице весов появится новый нуль. После этого перейдем к шагу 1.

Анализ времени работы

Поиск максимального паросочетания или минимального вершинного покрытия в двудольном графе совершается за [math] O(n^3) [/math] операций. При каждом повторении шагов 1-4 в матрице весов появляется новый нуль. Этот нуль соответствует некоторому новому ребру между вершинами из множеств [math] X \setminus X_c [/math] и [math] Y \setminus Y_c [/math]. Всего в графе n^2 ребер, значит, всего будет совершено не более [math] O(n^2) [/math] итераций внешнего цикла. Поэтому, верхняя оценка времени работы данного метода — [math] O(n^5) [/math]. Более точная оценка довольно сложна и зависит от порядка чисел в матрице весов графа.

Алгоритм за [math]O(n^3)[/math]

[math] \mathtt{a[1 \dots n][1 \dots m]} [/math] — прямоугольная входная матрица, где [math] \mathtt{n \leqslant m} [/math]. Матрица хранится в 1-индексации.

[math] \mathtt{u[0 \dots n], v[0 \dots n]} [/math] — массивы потенциалов.

[math] \mathtt{p[0 \dots m]} [/math] — массив паросочетания. Для каждого стобца [math] \mathtt{i = 0 \dots m} [/math] он хранит номер соответствующей выбранной строки [math] \mathtt{p[i]} [/math] (или 0, если ничего не выбрано). Полагаем, что [math] \mathtt{p[0]} [/math] равно номеру рассматриваемой строки.

[math] \mathtt{minv[1 \dots m]} [/math] — массив, хранящий для каждого столбца j вспомогательные минимумы, необходимые для быстрого пересчета потенциала.

[math] \mathtt{minv[j] = \min_{i \in Z_1}\{a[i][j] - u[i] - v[j]\}} [/math]

[math] \mathtt{way[1 \dots m]} [/math] — массив, содержащий информацию о том, где эти минимумы достигаются, чтобы мы могли впоследствии восстановить увеличивающую цепочку.

function hungarianAlgorithm(a):
  // добавляем в рассмотрение [math] i [/math]-ую строку матрицы 
  for i = 1 to n
    p[0] = i
    j0 = 0
    заполняем массивы minv — [math] \infty [/math], used — false
    // ищем свободный столбец j0 
    while true
      used[j0] = true
      i0 = p[j0]
      [math] \delta [/math] = [math] \infty [/math]  // минимум в массиве minv 
      // пересчитываем массив minv 
      for j = 1 to m
        if used[j] == 0
          cur = a[i0][j] - u[i0] - v[j]
          if cur < minv[j]
            minv[j] = cur
            way[j] = j0
          if minv[j] < [math] \delta [/math]
            [math] \delta [/math] = minv[j]
            j1 = j
      // производим пересчет потенциалов u и v, соответствующее изменение массива minv
      for j = 0 to m
        if used[j]
          u[p[j]] += [math] \delta [/math]
          v[j] -= [math] \delta [/math]
        else
          minv[j] -= [math] \delta [/math]
      j0 = j1
      if p[j0] != 0
        break
    // ищем увеличивающую цепочку, оканчивающуюся в столбце j0, "раскрутить" которую можно, пользуясь массивом предков way
    while true
      j1 = way[j0]
      p[j0] = p[j1]
      j0 = j1
      if j0 [math] \neq [/math] 0
        break

См. также

Источники информации