Граф блоков-точек сочленения — различия между версиями
м |
Maksnov (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> {{---}} последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> {{---}} точка сочленения. | Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> {{---}} последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> {{---}} точка сочленения. | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | == См. также == | + | ==См. также== |
* [[Граф компонент реберной двусвязности]] | * [[Граф компонент реберной двусвязности]] | ||
+ | |||
+ | ==Источники информации== | ||
+ | * Асанов М. О., Баранский В. А., Расин В. В. '''Дискретная математика: графы, матроиды, алгоритмы''' — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5 | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Связность в графах]] | [[Категория:Связность в графах]] |
Версия 22:50, 27 января 2016
Определение: |
Пусть граф связен. Обозначим — блоки, а — точки сочленения . Построим двудольный граф , поместив и в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф называют графом блоков-точек сочленения графа . |
Лемма: |
В определении, приведенном выше, — дерево. |
Доказательство: |
Достаточно показать, что в Пусть нет циклов. — последовательные вершины , лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая и и не содержащая . По ней можно проложить путь в (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине , получив цикл, что противоречит тому, что — точка сочленения. |
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5