Произвольно вычерчиваемые из заданной вершины графы — различия между версиями
м |
м (→Источники) |
||
Строка 37: | Строка 37: | ||
* [[Алгоритм построения Эйлерова цикла]] | * [[Алгоритм построения Эйлерова цикла]] | ||
− | ==Источники== | + | ==Источники информации== |
* Асанов М., Баранский В., Расин В. ''Дискретная математика: Графы, матроиды, алгоритмы.'', Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. ISBN 5-93972-076-5 | * Асанов М., Баранский В., Расин В. ''Дискретная математика: Графы, матроиды, алгоритмы.'', Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. ISBN 5-93972-076-5 | ||
Версия 19:25, 28 января 2016
Определение: |
Граф называется произвольно вычерчиваемым из вершины (англ. Arbitrarily traceable graph), если любая цепь с началом в вершине может быть продолжена до эйлерового цикла графа . |
Любой произвольно вычерчиваемый из вершины граф является эйлеровым графом.
Теорема: |
Эйлеров граф , содержащий хотя бы одно ребро, является произвольно вычерчиваемым из вершины вершина принадлежит всем циклам графа . |
Доказательство: |
Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам В . единственная компонента связности, содержащая ребра. При удалении их количество не могло увеличится, иначе должен быть цикл, не содержащий (смотри рисунок). Значит в единственная компонента связности содержащая ребра, причем либо полуэйлеров, либо эйлеров в эйлерова цепь эйлеров цикл в графе . |
Строение
Опираясь на теорему опишем строение всех графов, произвольно вычерчиваемых из вершины
Возьмем произвольный лес , не содержащий вершину . Каждую вершину нечетной степени соединим некоторым нечетным числом кратных ребер с , а каждую вершину четной степени четным числом кратных ребер с (не исключая ), причем каждую изолированную вершину обязательно соединим с .
Полученный граф :
- Связен;
- Имеет только вершины четной степени;
- Является произвольно вычерчиваемым из , как эйлеров граф, у которого принадлежит всем циклам.
Теперь докажем, почему таким образом можно получить все графы, произвольно вычерчиваемые из вершины
. Пусть какой-то такой граф нельзя получить методом описанным выше. Тогда уберем все ребра из вершины и посмотрим на граф, который остался. Он не является лесом, иначе мы могли бы получить этот граф нашим методом. Но если он не является лесом, то в нем есть хотя бы один цикл, который не содержит . А по теореме о произвольно вычерчиваемымых из вершины графах такого быть не может. Следовательно наше предположение ошибочно.См. также
Источники информации
- Асанов М., Баранский В., Расин В. Дискретная математика: Графы, матроиды, алгоритмы., Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001. ISBN 5-93972-076-5