Мощность множества — различия между версиями
Rybak (обсуждение | вклад) (Отмена правки 5107 участника Rybak (обсуждение)) |
м |
||
Строка 29: | Строка 29: | ||
<tex> a_2 \in A_1 \Rightarrow A_1 \backslash \{ a_2 \} = A_2 </tex> - также бесконечное множество. | <tex> a_2 \in A_1 \Rightarrow A_1 \backslash \{ a_2 \} = A_2 </tex> - также бесконечное множество. | ||
− | Продолжаем этот процесс далее, пока не останется <tex> B \subset A </tex> - счетное множество. (ЩИТО? У кого есть что-нибудь адекватное насчет этого, исправьте, пожалуйста.) | + | Продолжаем этот процесс далее, пока не останется <tex> B \subset A </tex> - счетное множество. {{TODO|t=(ЩИТО? У кого есть что-нибудь адекватное насчет этого, исправьте, пожалуйста.)}} |
}} | }} | ||
Строка 47: | Строка 47: | ||
<tex> A_n = \{ a_{n1}, a_{n2}, ... \} </tex>. | <tex> A_n = \{ a_{n1}, a_{n2}, ... \} </tex>. | ||
− | TODO | + | {{TODO|t= А вот тут должна какая-то биекция, доказывающая это утверждение.}} |
<tex> \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & \cdots \\ a_{31} & \cdots \\ \cdots \end{pmatrix} </tex> | <tex> \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & \cdots \\ a_{31} & \cdots \\ \cdots \end{pmatrix} </tex> |
Версия 11:27, 25 ноября 2010
Лекция от 20 сентября 2010.
Определения
Определение: |
Если А и В — произвольные множества, и между ними можно установить биекцию, что они равномощны: |
Множество называется конечным, если его элементы можно пересчитать, иначе его оно называется бесконечным.
Определение: |
Если | , то A называется счетным множеством.
- счетное множество.
Мощность счетных множеств минимальна по сравнению с другими бесконечными множествами.
Утверждение: |
Если А - бесконечное множество, то в нем содержится по меньшей мере одно счетное подмножество. |
- бесконечное множество. - также бесконечное множество. Продолжаем этот процесс далее, пока не останется - счетное множество. TODO: (ЩИТО? У кого есть что-нибудь адекватное насчет этого, исправьте, пожалуйста.) |
Если
- совокупность попарно различных элементов, то это - счетное множество.Для счетных множеств часто применяется следующий факт:
Утверждение: |
Не более чем счетное объединение не более, чем счетных множеств, не более, чем счетно:
Пусть Тогда: - счетное/конечное множество. |
.
|
Определение: |
называется континииумом. |
Утверждение: |
- несчетное множество. |
Будем доказывать от противного. Применим принцип вложенных отрезков: Пусть Разделим I на 3 части и назовем . Такой отрезок всегда существует.Далее разобьем на 3 части. Назовем тот отрезок, который не содержит , и так далее..В результате выстраивается система вложенных отрезков:
По свойству системы вложенных отрезков:
По построению: . Пусть теперь . , но , противоречие. |
Если
, то обычно говорят, что А обладает мощностью континиума:Утверждение: |
Рассмотрим функцию С ее помощью можно установить биекцию между множествами и .Биекцию между множествами и можно установить параллельным переносом и сжатием:
Получили, что .Осталось доказать, что .Применим следующий прием: Пусть - попарно различны.Множество - счетное.Определим множество . Множество также счетное.Между счетными множествами можно установить биекцию: В итоге получили, что |
- счетно.
иррациональных чисел по мощности континииум.