Граф замен — различия между версиями
(→Источники информации) |
|||
Строка 19: | Строка 19: | ||
Также существует граф замен для одного матроида. Он определяется так: пусть дан матроид <tex>M = (S, I)</tex> и независимый сет <tex>I \in I</tex>. Тогда граф замен <tex>D_{M}(I)</tex> (или просто <tex>D(I)</tex>) это двудольный граф с долями <tex>I</tex> и <tex>S \setminus I</tex> с рёбрами между <tex>y \in I</tex> и <tex>x \in S \setminus I</tex> если <tex> I - y + x \in I </tex> | Также существует граф замен для одного матроида. Он определяется так: пусть дан матроид <tex>M = (S, I)</tex> и независимый сет <tex>I \in I</tex>. Тогда граф замен <tex>D_{M}(I)</tex> (или просто <tex>D(I)</tex>) это двудольный граф с долями <tex>I</tex> и <tex>S \setminus I</tex> с рёбрами между <tex>y \in I</tex> и <tex>x \in S \setminus I</tex> если <tex> I - y + x \in I </tex> | ||
− | {{Лемма | + | {{Лемма |
+ | |id= ==lemma== | ||
+ | |about=о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем | ||
|statement = | |statement = | ||
Пусть дан двудольный граф замен. В его правой доле можно выделить два подмножества вершин <tex>X_1 = \{z \in S \setminus I \mid I \cup z \in I_1 \}, X_2 = \{z \in S \setminus I \mid I \cup z \in I_2 \}</tex>. Пусть <tex>P</tex> — кратчайший путь из <tex>X_1</tex> в <tex>X_2</tex>. Рассмотрим сужение <tex>G'</tex> графа <tex>G</tex> на множество вершин, лежащих в пути <tex>P</tex>. | Пусть дан двудольный граф замен. В его правой доле можно выделить два подмножества вершин <tex>X_1 = \{z \in S \setminus I \mid I \cup z \in I_1 \}, X_2 = \{z \in S \setminus I \mid I \cup z \in I_2 \}</tex>. Пусть <tex>P</tex> — кратчайший путь из <tex>X_1</tex> в <tex>X_2</tex>. Рассмотрим сужение <tex>G'</tex> графа <tex>G</tex> на множество вершин, лежащих в пути <tex>P</tex>. |
Версия 20:55, 13 апреля 2016
Граф замен — специальный ориентированный двудольный граф, фигурирующий в теореме Эдмондса-Лоулера.
Пусть алгоритмом для матроидов , . Введем граф замен , левой долей которого являются элементы множества , правой — все остальные элементы . Проведем все имеющиеся ребра
— текущее независимое множество, построенное
,
а также
.
Пусть — кратчайший путь в из в . Тогда алгоритм с помощью этого пути либо определяет максимальность набора , либо позволяет найти набор большей мощности.
Также существует граф замен для одного матроида. Он определяется так: пусть дан матроид
и независимый сет . Тогда граф замен (или просто ) это двудольный граф с долями и с рёбрами между и еслиЛемма (о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем): |
Пусть дан двудольный граф замен. В его правой доле можно выделить два подмножества вершин . Пусть — кратчайший путь из в . Рассмотрим сужение графа на множество вершин, лежащих в пути .
Тогда в существует единственное полное паросочетание. |
Доказательство: |
Строго говоря, утверждение теоремы не совсем корректно, так как в правой доле полученного графа вершин на одну больше, чем в левой. Поэтому добавим в фиктивную вершину и отнесем ее к левой доле. Пусть путь , где — фиктивная вершина (рис. 1).Существование полного паросочетания очевидно — это ребра .Предположим, что существует другое паросочетание Противоречие. . Тогда пусть . Обозначим как . Заметим, что и поэтому не может быть , ведь — минимальное из соответствующего множества. Так же невозможно , поскольку тогда и имели бы одинаковую пару. Следовательно, (рис. 2). Это значит, что существует путь короче, чем . |