Интерактивные протоколы. Класс IP. Класс AM — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 24: Строка 24:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Если для интерактивного протокола выполняется <tex> \forall x \in L \Rightarrow  \exists P : \mathbb{P}(V_{P}(x) = 1) \geqslant c </tex>, то говорят, что он обладает свойством ''' completeness ''' (русск. ''полнота'') равным <tex> \alpha </tex>.
+
Если для интерактивного протокола выполняется <tex> \forall x \in L \Rightarrow  \exists P : \mathbb{P}(V_{P}(x) = 1) \geqslant c </tex>, то говорят, что он обладает свойством ''' completeness ''' (русск. ''полнота'') равным <tex> c </tex>.
 
}}
 
}}
 
Если <tex>c = 1</tex> ('''perfect completeness'''), то это означает, что никакое верное утверждение не отклоняется <tex> V </tex>.
 
Если <tex>c = 1</tex> ('''perfect completeness'''), то это означает, что никакое верное утверждение не отклоняется <tex> V </tex>.
Строка 30: Строка 30:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Если для интерактивного протокола выполняется <tex> \forall x \notin L \Rightarrow \forall P : \mathbb{P}(V_{P}(x) = 1) \leqslant 1 - s </tex>, то говорят, что он обладает свойством ''' soundness ''' (русск. ''достоверность'') равным <tex> \alpha </tex>.
+
Если для интерактивного протокола выполняется <tex> \forall x \notin L \Rightarrow \forall P : \mathbb{P}(V_{P}(x) = 1) \leqslant 1 - s </tex>, то говорят, что он обладает свойством ''' soundness ''' (русск. ''достоверность'') равным <tex> s </tex>.
 
}}  
 
}}  
 
Если <tex>s = 1 </tex> ('''perfect soundness'''), то это означет, что если утверждение ложно, то никакой <tex>P</tex> не может убедить <tex>V</tex>, что утверждение истино. В этом случае мы получем класс <tex> \mathrm{NP} </tex>. Потому что <tex> x \in L </tex> тогда и только тогда, если существует последовательность случайных вопросов, генерируемых <tex> V </tex>, и последовательность ответов <tex> P </tex>, которые убеждают <tex> V </tex> в том, что <tex> x \in L </tex>. Обратное утверждение сохраняется по предположению идеальной достоверности.
 
Если <tex>s = 1 </tex> ('''perfect soundness'''), то это означет, что если утверждение ложно, то никакой <tex>P</tex> не может убедить <tex>V</tex>, что утверждение истино. В этом случае мы получем класс <tex> \mathrm{NP} </tex>. Потому что <tex> x \in L </tex> тогда и только тогда, если существует последовательность случайных вопросов, генерируемых <tex> V </tex>, и последовательность ответов <tex> P </tex>, которые убеждают <tex> V </tex> в том, что <tex> x \in L </tex>. Обратное утверждение сохраняется по предположению идеальной достоверности.
Строка 86: Строка 86:
 
|statement=<tex>\mathrm{GNI} \in \mathrm{IP}[1]</tex>.
 
|statement=<tex>\mathrm{GNI} \in \mathrm{IP}[1]</tex>.
 
|proof=
 
|proof=
 +
Пусть на вход подали пару графов <tex> \langle G_{0}, G_{1} \rangle </tex> и нужно определить изоморфны ли они.
 
Будем использовать следующий алгоритм для <tex>V</tex>:
 
Будем использовать следующий алгоритм для <tex>V</tex>:
 
# Возьмём случайное число <tex>i \in \{0, 1\}</tex> и [[Комбинаторные_объекты|случайную перестановку]] <tex>\pi</tex> с вероятностной ленты;
 
# Возьмём случайное число <tex>i \in \{0, 1\}</tex> и [[Комбинаторные_объекты|случайную перестановку]] <tex>\pi</tex> с вероятностной ленты;
# Создадим новый граф, перемешав вершины графа c номером <tex>i</tex> перестановкой <tex>\pi</tex>.
+
# Создадим новый граф <tex> G </tex>, перемешав вершины графа c номером <tex>i</tex> перестановкой <tex>\pi</tex>.
# Перешлём <tex>P</tex> полученный граф с просьбой определить, из какого из исходных графов он был получен.
+
# Перешлём <tex>P</tex> полученный граф <tex> G </tex> с просьбой определить, из какого из исходных графов он был получен. Если <tex>G_{0} \ncong G_{1} </tex>, то он может перебрать все перестановки графов <tex> G_{0}, G_{1} </tex>, и так как <tex>G_{0} \ncong G_{1} </tex>, то только одна перестановка только на одном графе даст <tex> G </tex>. Иначе, существуют такие перестановки <tex> \phi, \psi </tex>, что <tex> \phi(G_0) = \psi(G_1) = G </tex>, и <tex> P </tex> никак не сможет определить из какого графа был получен <tex> G </tex>. Тогда <tex> P </tex> просто попытается угадать граф, вернув случайно <tex> 0 </tex> или <tex> 1 </tex>.
 
# Получив ответ, сравним его с правильным ответом — числом <tex>i</tex>.
 
# Получив ответ, сравним его с правильным ответом — числом <tex>i</tex>.
 
# Если полученный ответ не совпадёт с <tex>i</tex>, то вернём <tex>0</tex>.
 
# Если полученный ответ не совпадёт с <tex>i</tex>, то вернём <tex>0</tex>.

Версия 02:27, 10 мая 2016

Определения

Определение:
Интерактивным протоколом (англ. interactive proof system) [math] \langle P, V \rangle [/math], разрешающим язык [math]L[/math], называется абстрактная машина (см. рисунок), моделирующая вычисления как обмен сообщениями между двумя программами (где [math]P[/math] означает [math] \mathrm{Prover}[/math] и [math] V [/math] означает [math]\mathrm{Verifier}[/math]), такими, что
  1. [math]P[/math] заинтересован в том, чтобы [math]V[/math] решил, что слово [math]x[/math] принадлежит языку.
  2. [math]P[/math] не ограничен по времени вычисления и памяти.
  3. [math]V[/math] заинтересован установить, действительно ли слово [math]x[/math] принадлежит языку.
  4. [math]V[/math]вероятностная машина Тьюринга.
  5. [math]V[/math] ограничен полиномиальным временем работы.
Схема интерактивного протокола.

Замечания:

  1. [math]V[/math], обменивающийся сообщениями с фиксированным [math]P[/math], обозначим [math]V_{P}[/math].
  2. [math] P [/math] может быть и вероятностной и детерминированной машиной Тьюринга. Так как он имеет неограниченные вычислительные ресурсы, то на каждом ходу он может выбрать такие вероятностные данные и произвести вычисления с ними, что они максимизируют вероятность принятия слова [math] V [/math].
  3. С другой стороны, для [math] V [/math] важно быть вероятностной программой, так как иначе он будет принимать или отвергать слова с вероятностью [math] 1 [/math]. И пользуясь предыдущим фактом, получим, что [math] V_{P} [/math] всегда принимает слова из [math] L [/math].
  4. Так как [math] V [/math] может писать и читать полиномиальное число символов, то длина сообщений между [math] V [/math] и [math] P [/math] есть полином от длины [math] x [/math].

Интерактивные протоколы делятся на два типа в зависимости от доступа [math]P[/math] к вероятностной ленте [math]V[/math]:

  1. public coins (русск. открытые монеты) — [math]P[/math] может видеть вероятностную ленту [math]V[/math];
  2. private coins (русск. закрытые монеты)— [math]P[/math] не может видеть вероятностную ленту [math]V[/math].


Определение:
Если для интерактивного протокола выполняется [math] \forall x \in L \Rightarrow \exists P : \mathbb{P}(V_{P}(x) = 1) \geqslant c [/math], то говорят, что он обладает свойством completeness (русск. полнота) равным [math] c [/math].

Если [math]c = 1[/math] (perfect completeness), то это означает, что никакое верное утверждение не отклоняется [math] V [/math].


Определение:
Если для интерактивного протокола выполняется [math] \forall x \notin L \Rightarrow \forall P : \mathbb{P}(V_{P}(x) = 1) \leqslant 1 - s [/math], то говорят, что он обладает свойством soundness (русск. достоверность) равным [math] s [/math].

Если [math]s = 1 [/math] (perfect soundness), то это означет, что если утверждение ложно, то никакой [math]P[/math] не может убедить [math]V[/math], что утверждение истино. В этом случае мы получем класс [math] \mathrm{NP} [/math]. Потому что [math] x \in L [/math] тогда и только тогда, если существует последовательность случайных вопросов, генерируемых [math] V [/math], и последовательность ответов [math] P [/math], которые убеждают [math] V [/math] в том, что [math] x \in L [/math]. Обратное утверждение сохраняется по предположению идеальной достоверности.


Определение:
[math]\mathrm{IP}[f] [/math] (Interactive Polynomial time) [math] = \{L \mid \exists [/math] интерактивный протокол [math]\langle P, V \rangle : [/math]
  1. [math]P[/math] не имеет доступа к вероятностной ленте [math]V[/math] (private coins).
  2. [math] c \geqslant 2/{3} [/math].
  3. [math] s \geqslant 2 /{3} [/math].
  4. число раундов интерактивного протокола [math] O(f(n)), n = |x|\}[/math].


Определение:
[math]\mathrm{IP}=\bigcup\limits_{p(n) \in poly} \mathrm{IP} [p(n)] [/math]

То есть [math] \mathrm{IP}[/math] — множество языков разрешимых интерактивным протоколом , таких, что число сообщений ограничено полиномом от длины слова и [math]V[/math] должен решить лежит ли слово в языке с вероятностью ошибки не более [math]1/{3}[/math].

Язык [math]\mathrm{AM}[/math] (Arthur–Merlin games) отличается от [math]\mathrm{IP}[/math] лишь тем, что [math]P[/math] может видеть вероятностную ленту [math]V[/math].

Определение:
[math]\mathrm{AM}[f] = \{L \mid \exists [/math] интерактивный протокол [math]\langle P, V \rangle : [/math]
  1. [math]P[/math] может читать вероятностную ленту [math]V[/math] (public coins).
  2. [math] c \geqslant 2/{3} [/math].
  3. [math] s \geqslant 2 /{3} [/math].
  4. число раундов интерактивного протокола [math] O(f(n)), n = |x|\}[/math].


Определение:
[math]\mathrm{AM}=\bigcup\limits_{p(n) \in poly} \mathrm{AM} [p(n)] [/math]


Соотношения с другими классами теории сложности

Теорема:
[math]\mathrm{BPP}[/math] [math]\subset \mathrm{IP}[0][/math].
Доказательство:
[math]\triangleright[/math]
[math]V[/math] сам по себе является вероятностной машиной Тьюринга и поэтому может разрешить язык из [math]\mathrm{BPP}[/math] не прибегая к общению с [math]P[/math].
[math]\triangleleft[/math]
Теорема:
[math]\mathrm{NP} \subset \mathrm{IP}[1][/math].
Доказательство:
[math]\triangleright[/math]

Для разрешения языка из [math]\mathrm{NP}[/math] будем использовать следующий протокол:

[math]P[/math] будет проверять на принадлежность слова [math]x[/math] языку, используя сертификат, который он запросит у [math]P[/math]. Так как [math]P[/math] не ограничен в вычислительной мощности, он может подобрать подходящий сертификат и именно его и сообщит, так как он заинтересован в том, чтобы [math]V[/math] принял слово. Для этого требуется лишь один раунд интерактивного протокола.
[math]\triangleleft[/math]

Язык GNI

Определение:
[math]\mathrm{GNI}[/math] расшифровывается как Graph Non Isomorphism. Это язык пар неизоморфных друг другу графов. [math]\mathrm{GNI}=\{ \langle G, H \rangle \mid [/math] графы [math]G[/math] и [math]H[/math] не изоморфны [math]\}[/math].


Теорема:
[math]\mathrm{GNI} \in \mathrm{IP}[1][/math].
Доказательство:
[math]\triangleright[/math]

Пусть на вход подали пару графов [math] \langle G_{0}, G_{1} \rangle [/math] и нужно определить изоморфны ли они. Будем использовать следующий алгоритм для [math]V[/math]:

  1. Возьмём случайное число [math]i \in \{0, 1\}[/math] и случайную перестановку [math]\pi[/math] с вероятностной ленты;
  2. Создадим новый граф [math] G [/math], перемешав вершины графа c номером [math]i[/math] перестановкой [math]\pi[/math].
  3. Перешлём [math]P[/math] полученный граф [math] G [/math] с просьбой определить, из какого из исходных графов он был получен. Если [math]G_{0} \ncong G_{1} [/math], то он может перебрать все перестановки графов [math] G_{0}, G_{1} [/math], и так как [math]G_{0} \ncong G_{1} [/math], то только одна перестановка только на одном графе даст [math] G [/math]. Иначе, существуют такие перестановки [math] \phi, \psi [/math], что [math] \phi(G_0) = \psi(G_1) = G [/math], и [math] P [/math] никак не сможет определить из какого графа был получен [math] G [/math]. Тогда [math] P [/math] просто попытается угадать граф, вернув случайно [math] 0 [/math] или [math] 1 [/math].
  4. Получив ответ, сравним его с правильным ответом — числом [math]i[/math].
  5. Если полученный ответ не совпадёт с [math]i[/math], то вернём [math]0[/math].
  6. Иначе повторим первые пять шагов ещё раз и перейдём к последнему шагу.
  7. Если мы ещё не вернули [math]0[/math], то вернём [math]1[/math].

Покажем, что это удовлетворяет ограничениям на [math]\mathrm{IP}[1][/math]. Во-первых, очевидно, что число раундов не превосходит двух.

Рассмотрим теперь два случая:

  • [math] \langle G, H \rangle \in \mathrm{GNI}[/math]. Тогда [math]G[/math] и [math]H[/math] неизоморфны и [math]P[/math] сможет определить какой граф был перемешан [math]V[/math]. Таким образом, [math]P[/math] сможет два раза подряд вернуть правильный ответ и в итоге [math]V[/math] вернёт [math]1[/math]. То есть получили completeness равную [math] 1 [/math].
  • [math] \langle G, H \rangle \notin \mathrm{GNI}[/math]. Тогда [math]G[/math] и [math]H[/math] изоморфны и [math]P[/math] не сможет определить какой граф был перемешан [math]V[/math]. Так как [math]P[/math] заинтересован в том, чтобы [math]V[/math] принял слово, ему необходимо угадать правильный ответ (иначе [math]V[/math] просто вернёт [math]0[/math]). Вероятность того, что [math]V[/math] примет слово [math]x[/math], когда оно не принадлежит языку (то есть [math]P[/math] два раза подряд верно угадает номер графа с вероятностью [math] 0.5 [/math]), равна [math]0.25[/math]. Значит soundness равна [math] 0.75 [/math], что больше или равно [math] 2/{3} [/math].
Таким образом, построенный протокол удовлетворяет условию теоремы.
[math]\triangleleft[/math]

См. также