Интерактивные протоколы. Класс IP. Класс AM — различия между версиями
Строка 24: | Строка 24: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Если для интерактивного протокола выполняется <tex> \forall x \in L \Rightarrow \exists P : \mathbb{P}(V_{P}(x) = 1) \geqslant c </tex>, то говорят, что он обладает свойством ''' completeness ''' (русск. ''полнота'') равным <tex> | + | Если для интерактивного протокола выполняется <tex> \forall x \in L \Rightarrow \exists P : \mathbb{P}(V_{P}(x) = 1) \geqslant c </tex>, то говорят, что он обладает свойством ''' completeness ''' (русск. ''полнота'') равным <tex> c </tex>. |
}} | }} | ||
Если <tex>c = 1</tex> ('''perfect completeness'''), то это означает, что никакое верное утверждение не отклоняется <tex> V </tex>. | Если <tex>c = 1</tex> ('''perfect completeness'''), то это означает, что никакое верное утверждение не отклоняется <tex> V </tex>. | ||
Строка 30: | Строка 30: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Если для интерактивного протокола выполняется <tex> \forall x \notin L \Rightarrow \forall P : \mathbb{P}(V_{P}(x) = 1) \leqslant 1 - s </tex>, то говорят, что он обладает свойством ''' soundness ''' (русск. ''достоверность'') равным <tex> | + | Если для интерактивного протокола выполняется <tex> \forall x \notin L \Rightarrow \forall P : \mathbb{P}(V_{P}(x) = 1) \leqslant 1 - s </tex>, то говорят, что он обладает свойством ''' soundness ''' (русск. ''достоверность'') равным <tex> s </tex>. |
}} | }} | ||
Если <tex>s = 1 </tex> ('''perfect soundness'''), то это означет, что если утверждение ложно, то никакой <tex>P</tex> не может убедить <tex>V</tex>, что утверждение истино. В этом случае мы получем класс <tex> \mathrm{NP} </tex>. Потому что <tex> x \in L </tex> тогда и только тогда, если существует последовательность случайных вопросов, генерируемых <tex> V </tex>, и последовательность ответов <tex> P </tex>, которые убеждают <tex> V </tex> в том, что <tex> x \in L </tex>. Обратное утверждение сохраняется по предположению идеальной достоверности. | Если <tex>s = 1 </tex> ('''perfect soundness'''), то это означет, что если утверждение ложно, то никакой <tex>P</tex> не может убедить <tex>V</tex>, что утверждение истино. В этом случае мы получем класс <tex> \mathrm{NP} </tex>. Потому что <tex> x \in L </tex> тогда и только тогда, если существует последовательность случайных вопросов, генерируемых <tex> V </tex>, и последовательность ответов <tex> P </tex>, которые убеждают <tex> V </tex> в том, что <tex> x \in L </tex>. Обратное утверждение сохраняется по предположению идеальной достоверности. | ||
Строка 86: | Строка 86: | ||
|statement=<tex>\mathrm{GNI} \in \mathrm{IP}[1]</tex>. | |statement=<tex>\mathrm{GNI} \in \mathrm{IP}[1]</tex>. | ||
|proof= | |proof= | ||
+ | Пусть на вход подали пару графов <tex> \langle G_{0}, G_{1} \rangle </tex> и нужно определить изоморфны ли они. | ||
Будем использовать следующий алгоритм для <tex>V</tex>: | Будем использовать следующий алгоритм для <tex>V</tex>: | ||
# Возьмём случайное число <tex>i \in \{0, 1\}</tex> и [[Комбинаторные_объекты|случайную перестановку]] <tex>\pi</tex> с вероятностной ленты; | # Возьмём случайное число <tex>i \in \{0, 1\}</tex> и [[Комбинаторные_объекты|случайную перестановку]] <tex>\pi</tex> с вероятностной ленты; | ||
− | # Создадим новый граф, перемешав вершины графа c номером <tex>i</tex> перестановкой <tex>\pi</tex>. | + | # Создадим новый граф <tex> G </tex>, перемешав вершины графа c номером <tex>i</tex> перестановкой <tex>\pi</tex>. |
− | # Перешлём <tex>P</tex> полученный граф с просьбой определить, из какого из исходных графов он был получен. | + | # Перешлём <tex>P</tex> полученный граф <tex> G </tex> с просьбой определить, из какого из исходных графов он был получен. Если <tex>G_{0} \ncong G_{1} </tex>, то он может перебрать все перестановки графов <tex> G_{0}, G_{1} </tex>, и так как <tex>G_{0} \ncong G_{1} </tex>, то только одна перестановка только на одном графе даст <tex> G </tex>. Иначе, существуют такие перестановки <tex> \phi, \psi </tex>, что <tex> \phi(G_0) = \psi(G_1) = G </tex>, и <tex> P </tex> никак не сможет определить из какого графа был получен <tex> G </tex>. Тогда <tex> P </tex> просто попытается угадать граф, вернув случайно <tex> 0 </tex> или <tex> 1 </tex>. |
# Получив ответ, сравним его с правильным ответом — числом <tex>i</tex>. | # Получив ответ, сравним его с правильным ответом — числом <tex>i</tex>. | ||
# Если полученный ответ не совпадёт с <tex>i</tex>, то вернём <tex>0</tex>. | # Если полученный ответ не совпадёт с <tex>i</tex>, то вернём <tex>0</tex>. |
Версия 02:27, 10 мая 2016
Определения
Определение: |
Интерактивным протоколом (англ. interactive proof system)
| , разрешающим язык , называется абстрактная машина (см. рисунок), моделирующая вычисления как обмен сообщениями между двумя программами (где означает и означает ), такими, что
Замечания:
- , обменивающийся сообщениями с фиксированным , обозначим .
- может быть и вероятностной и детерминированной машиной Тьюринга. Так как он имеет неограниченные вычислительные ресурсы, то на каждом ходу он может выбрать такие вероятностные данные и произвести вычисления с ними, что они максимизируют вероятность принятия слова .
- С другой стороны, для важно быть вероятностной программой, так как иначе он будет принимать или отвергать слова с вероятностью . И пользуясь предыдущим фактом, получим, что всегда принимает слова из .
- Так как может писать и читать полиномиальное число символов, то длина сообщений между и есть полином от длины .
Интерактивные протоколы делятся на два типа в зависимости от доступа
к вероятностной ленте :- public coins (русск. открытые монеты) — может видеть вероятностную ленту ;
- private coins (русск. закрытые монеты)— не может видеть вероятностную ленту .
Определение: |
Если для интерактивного протокола выполняется | , то говорят, что он обладает свойством completeness (русск. полнота) равным .
Если
(perfect completeness), то это означает, что никакое верное утверждение не отклоняется .
Определение: |
Если для интерактивного протокола выполняется | , то говорят, что он обладает свойством soundness (русск. достоверность) равным .
Если
(perfect soundness), то это означет, что если утверждение ложно, то никакой не может убедить , что утверждение истино. В этом случае мы получем класс . Потому что тогда и только тогда, если существует последовательность случайных вопросов, генерируемых , и последовательность ответов , которые убеждают в том, что . Обратное утверждение сохраняется по предположению идеальной достоверности.
Определение: |
| (Interactive Polynomial time) интерактивный протокол
Определение: |
То есть
— множество языков разрешимых интерактивным протоколом , таких, что число сообщений ограничено полиномом от длины слова и должен решить лежит ли слово в языке с вероятностью ошибки не более .Язык
(Arthur–Merlin games) отличается от лишь тем, что может видеть вероятностную ленту .Определение: |
| интерактивный протокол
Определение: |
Соотношения с другими классами теории сложности
Теорема: |
. |
Доказательство: |
язык из не прибегая к общению с . | сам по себе является вероятностной машиной Тьюринга и поэтому может разрешить
Теорема: |
. |
Доказательство: |
Для разрешения языка из будем использовать следующий протокол: будет проверять на принадлежность слова языку, используя сертификат, который он запросит у . Так как не ограничен в вычислительной мощности, он может подобрать подходящий сертификат и именно его и сообщит, так как он заинтересован в том, чтобы принял слово. Для этого требуется лишь один раунд интерактивного протокола. |
Язык GNI
Определение: |
неизоморфных друг другу графов. графы и не изоморфны . | расшифровывается как Graph Non Isomorphism. Это язык пар
Теорема: |
. |
Доказательство: |
Пусть на вход подали пару графов и нужно определить изоморфны ли они. Будем использовать следующий алгоритм для :
Покажем, что это удовлетворяет ограничениям на . Во-первых, очевидно, что число раундов не превосходит двух.Рассмотрим теперь два случая:
|