Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) |
Анна (обсуждение | вклад) (→Доказательство корректности) |
||
Строка 31: | Строка 31: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Для множества работ с дедлайнами tex>d_1, d_2, \ldots d_n</tex> задача имеет решение тогда и только тогда, когда <tex>h(1) \leqslant m</tex>. | + | Для множества работ с дедлайнами <tex>d_1, d_2, \ldots d_n</tex> задача имеет решение тогда и только тогда, когда <tex>h(1) \leqslant m</tex>. |
|proof= | |proof= | ||
+ | Изначально алгоритм присваивает все стадии обработки каждой работы <tex>i</tex> (то есть обработку на каждом станке) попарно различным временным интервалам. | ||
}} | }} |
Версия 13:42, 11 мая 2016
Задача: |
Дано | одинаковых станков, которые работают параллельно, и работ, которые необходимо выполнить в произвольном порядке на всех станках. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть время окончания — время, до которого она должна быть выполнена. Необходимо проверить, существует ли расписание, при котором все работы будут выполнены вовремя.
Содержание
Описание алгоритма
Идея
Заметим, что если
, то очевидно, что , следовательно, расписания не существует. Поэтому будем полагать, что для .Определим
— количество временных интервалов , где . Будем обозначать как . Для каждого из них мы можем назначить не более работ (по одной на каждый станок). Для каждой работы будем назначать времена обработки на каждой из машин следующим образом: на машине работа займет временной интервал , на машине — интервал и так далее, на машине работа займет временной интервал . В случае коллизий, то есть если найдется временной интервал , содержащий работу, возьмем минимальный такой и перенесем лишнюю работу из него на ту же машину, но на один временной интервал левее. Будем повторять этот процесс, пока необходимо (и пока ). Таким образом, только первый временной интервал может содержать более работ. Причем это может произойти тогда и только тогда, когда задача не имеет решения, то есть не существует расписания, при котором все работы будут выполнены вовремя.Псевдокод
Определим
— количество работ во временном интервале .void checkExistenceOfSchedule(int*): for to for to for to while and find if return true else return false
Асимптотика
Доказательство корректности
Теорема: |
Для множества работ с дедлайнами задача имеет решение тогда и только тогда, когда . |
Доказательство: |
Изначально алгоритм присваивает все стадии обработки каждой работы | (то есть обработку на каждом станке) попарно различным временным интервалам.