Opij1sumwu — различия между версиями
(→Описание алгоритма) |
(→Описание алгоритма) |
||
Строка 27: | Строка 27: | ||
Пусть <tex>p=d_{i+1}-d_i</tex>, тогда определим рекуррентное выражение для <tex>f_i(k,k_1 \ldots , k_m)</tex>: | Пусть <tex>p=d_{i+1}-d_i</tex>, тогда определим рекуррентное выражение для <tex>f_i(k,k_1 \ldots , k_m)</tex>: | ||
− | <tex> | + | <tex>f_i(k,k_1 \ldots , k_m)=\left\{\begin{matrix} |
f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i, & m(d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} < m \\ | f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i, & m(d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} < m \\ | ||
\min(f_{i+1}(k,k_{1+p},k_{2+p}, \ldots ,k_{m+p})+w_i ; f_{i+1}(k+1,k_{1+p}+l_{1+p},k_{2+p}+l_{2+p}, \ldots ,k_{m+p}+l_{m+p})), & m(d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} \geqslant m\\ | \min(f_{i+1}(k,k_{1+p},k_{2+p}, \ldots ,k_{m+p})+w_i ; f_{i+1}(k+1,k_{1+p}+l_{1+p},k_{2+p}+l_{2+p}, \ldots ,k_{m+p}+l_{m+p})), & m(d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} \geqslant m\\ |
Версия 18:37, 14 мая 2016
Задача: |
Дано | одинаковых станков, которые работают параллельно, и работ, которые необходимо выполнить в произвольном порядке на всех станках. Любая работа на любом станке выполняется за единицу времени. Для каждой работы есть время окончания — время, до которого она должна быть выполнена. Требуется минимизировать , то есть суммарный вес всех просроченных работ.
Описание алгоритма
Для решения этой задачи, мы должны найти множество .
, что минимальна. Будем решать эту задачу с помощью динамического программирования с использованием утверждений из решении задачиРассмотрим работы в порядке не убывания дедлайнов:
. Пусть мы нашли решение для работ . Очевидно, что .Пусть . Тогда, для добавления работы в множество должно выполняться неравенство: , где и — количество периодов времени со свойствами: и . Чтобы проверить это неравенство, нам нужно посчитать чисел , . Для этого определим переменные:
— вектор соответствующий множеству из задачи
.
Тогда можно заметить, что
. Следовательно можно упростим исходное неравенство: или .Для динамического программирования определим
, где и где .Пусть
, тогда определим рекуррентное выражение для :
и начальное условие:
для .Ответ на задачу будет находиться в
Время работы
Для определения времени работы алгоритма надо заметить, что
, где . Из рекуррентной формулы очевидно, что подсчет одного значение нужно времени. Значит алгоритм работает за или для фиксированного .См. также
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — c. 168 - 171. ISBN 978-3-540-69515-8