Pintreepi1Lmax — различия между версиями
Zernov (обсуждение | вклад) (→Второй шаг) |
Zernov (обсуждение | вклад) (→Первый шаг) |
||
Строка 65: | Строка 65: | ||
<tex>\Leftarrow </tex> | <tex>\Leftarrow </tex> | ||
:Пусть у нас были сроки <tex>{d_i}</tex> и мы их заменили на <tex>{d'_i}</tex> в соответствии с приведенным алгоритмом. | :Пусть у нас были сроки <tex>{d_i}</tex> и мы их заменили на <tex>{d'_i}</tex> в соответствии с приведенным алгоритмом. | ||
− | :Пронумеруем вершины от <tex>1</tex> до <tex>n</tex> в соответствии с '''обратным''' порядком обхода в алгоритме изменения сроков, причём <tex>d_{i} \leqslant d_{j}</tex>, если <tex>i \leqslant j</tex>. В соответствии с расписанием, время, когда деталь закончит обрабатываться на станке <tex>{C_i}</tex> удовлетворяет неравенству <tex>{C_i} \leqslant {d_i}</tex> для всех <tex>{C_1} \dots {C_n}</tex>. Тогда мы имеем <tex>{C_n} \leqslant {d_n} = {d'_n}</tex>. Если для какого-то <tex>1 < r \leqslant n</tex> мы имеем <tex>{C_n} \leqslant {d'_n}</tex> для <tex>i = r \dots n </tex> и существует работа <tex>j</tex> из этого промежутка, что вершина с номером <tex>r - 1</tex> является ее родителем, тогда <tex>C_{r-1} \leqslant \min(d_{r-1},d'_{j}-1) = d'_{r-1}</tex> | + | :Пронумеруем вершины от <tex>1</tex> до <tex>n</tex> в соответствии с '''обратным''' порядком обхода в алгоритме изменения сроков, причём <tex>d_{i} \leqslant d_{j}</tex>, если <tex>i \leqslant j</tex>. В соответствии с расписанием, время, когда деталь закончит обрабатываться на станке <tex>{C_i}</tex> удовлетворяет неравенству <tex>{C_i} \leqslant {d_i}</tex> для всех <tex>{C_1} \dots {C_n}</tex>. Тогда мы имеем <tex>{C_n} \leqslant {d_n} = {d'_n}</tex>. Если для какого-то <tex>1 < r \leqslant n</tex> мы имеем <tex>{C_n} \leqslant {d'_n}</tex> для <tex>i = r \dots n </tex> и существует работа <tex>j</tex> из этого промежутка, что вершина с номером <tex>r - 1</tex> является ее родителем, тогда <tex>C_{r-1} \leqslant \min(d_{r-1},d'_{j}-1) = d'_{r-1}</tex>. |
}} | }} | ||
Версия 16:04, 30 мая 2016
Задача: |
Рассмотрим задачу на нахождение расписания:
|
Содержание
Описание алгоритма
Идея
Все работы хранятся в качестве вершин intree-дерева, состоящем из вершин, нескольких корней и одного листа. В intree-дереве у одной вершины может быть два и более родителей. Решение задачи состоит из двух шагов: на первом шаге мы меняем сроки выполнения работ в соответствии с их очередностью.
- Для всех таких, что существует ребро из в будем менять на .
- Работы расставляются в неубывающем порядке сроков.
Псевдокод
Первый шаг
Алгоритм изменения сроков:
i = 0 deque =for k = 1 .. n if k.parent == i = k // такая вершина только одна (intree-дерево) deque.push(i) // пустой дек while not deque.isEmpty() i = deque.removeFirst() for j in i.parents j.deadline = min(j.deadline, i.deadline - 1) stack.add_last(j)
Второй шаг
На втором этапе алгоритма работы сортируются в неубывающем порядке их дедлайнов. Предполагается, что работы занумерованы в соответствии с предыдущим пунктом, т.е.
, если .- В переменной хранится время, когда станок освободится.
- В массиве хранится информация о максимальном времени завершении обработки родителя.
- Массив хранит информацию о количестве работ, готовых к исполнению (находящихся в очереди) в момент времени .
- Массив хранит информацию о начале выполнения работы .
F = 0 for i = 1 .. n r[i] = 0 for t = 0 .. n q[t] = 0 for i = 1 .. n t = max(r[i], F) x[i] = t q[t] = q[t] + 1 if q[t] == m F = t + 1 j = i.child() r[j] = max(r[j], t + 1)
Доказательство корректности
Первый шаг
Лемма: |
Работа с новым сроком в расписании не имеет опозданий тогда и только тогда, когда она не имела опозданий с оригинальным сроком . |
Доказательство: |
|
Второй шаг
Расписание, сгенерированное этим алгоритмом имеет важное свойство: число заданий в очереди в любой момент времени
меньше, чем в момент . Действительно, пусть во время мы выполняем работ, и хотя бы работ готовы к выполению в момент времени . Но т.к. , значит каждой из работ предшествовала как минимум одна, поскольку у всех вершин, кроме корней, есть как минимум один предок. Значит, в момент времени исполнялось не менее работ, противоречие.Лемма: |
Если существует такое расписание, в котором ни одна из работ не будет выполнена с опозданием, то тогда это свойство сохранится в построенном данным алгоритмом расписании |
Доказательство: |
Предположим, что существует работа из расписания, построенного алгоритмом. В таком случае существует работа, которая опоздала по отношению к измененным срокам. Возьмем наименьшее такое, что . Пусть — наибольшее из удовлетворяющих условию , где Такое существует, потому что иначе работ с находятся в очереди до . Работа к ним не принадлежит, поскольку , а значит, что должны быть в очереди в момент времени и ни одна работа не должна опаздывать. Противоречие. Любая работа с и должна иметь предка, начавшего работать в момент времени . Теперь рассмотрим два случая:Первый случай: .
Второй случай: .
|
Корректность алгоритма
Теорема: |
Данный алгоритм корректно решает задачу |
Доказательство: |
Пусть | — оптимальное значение. В таком случае, существует расписание, удовлетворяющее , что эквивалетно выражению для . По первой лемме расписание , построенное для сдвинутых дат удовлетворяет данным выражениям. Таким образом, оно оптимально. Нетрудно заметить, что идентично расписанию, построенному алгоритмом, т.к. для
Асимптотика
- На перов шаге мы посещаем каждую вершину ровно два раза (первый — когда ищем вершину без родителя, второй — когда релаксируем дедлайны) за времени.
- Делаем сортировку вершин за , а затем для каждой вершины считаем время за линейное время.
Итоговая сложность —
См. также
Источники информации
- Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 151-156 ISBN 978-3-540-69515-8