Изменения
Нет описания правки
Из того, как в алгоритме выбирались значения для <tex>t_i</tex> следует, что <tex>t_{j + 1}</tex> {{---}} минимальное возможное время, большее <tex>t_j,</tex> в которое можно начать выполнять какое-нибудь из оставшихся заданий. Если во время <tex>t_{j+1}</tex> в расписании <tex>S</tex> не выполняется никакого задания, то какое-то задание, которое могло бы выполнится в момент времени <tex>t_{j+1}</tex> выполняется в <tex>S</tex> позднее. Значит оно может быть перемещено в нашем расписании <tex>S</tex> на время <tex>t_{j+1}</tex> без увеличения целевой функции. Таким образом, наше новое расписание тоже будет оптимальным. Получили противоречие с максимальностью <tex>j</tex>. Значит из всех оптимальных расписаний нам подходят только те, в которых <tex>j = n</tex>.
}}
==Частные случаи=====Различные времена появления заданий======Линейные функции==
== Пример ==
Рассмотрим простой пример.