Приближение непрерывной функции полиномами на отрезке — различия между версиями
(Доказана теорема Бернштейна, осталось чуть-чуть, помогите кто-нибудь =)) |
Komarov (обсуждение | вклад) (+доказательство леммы) |
||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
− | В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный | + | В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный характер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома: |
:<tex>f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)</tex> | :<tex>f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)</tex> | ||
:<tex>f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) </tex><tex dpi = "160">+ \frac{f^{(n + 1)}(c_x)}{(n + 1)!}</tex><tex> \cdot \omega_n(x)</tex> | :<tex>f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) </tex><tex dpi = "160">+ \frac{f^{(n + 1)}(c_x)}{(n + 1)!}</tex><tex> \cdot \omega_n(x)</tex> | ||
Строка 9: | Строка 9: | ||
Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции. | Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции. | ||
− | Можно поставить иную задачу, которая является намного более сложной: пусть функция <tex>f</tex> непрерывна на отрезке <tex>[a; b]</tex>. Существует ли <tex>\forall \varepsilon > 0</tex> некоторый полином <tex>P</tex> (неважно, какой степени) такой, что <tex>\forall x \in [a; b] \ | + | Можно поставить иную задачу, которая является намного более сложной: пусть функция <tex>f</tex> непрерывна на отрезке <tex>[a; b]</tex>. Существует ли <tex>\forall \varepsilon > 0</tex> некоторый полином <tex>P</tex> (неважно, какой степени) такой, что <tex>\forall x \in [a; b]: \ |f(x) - P(x)| < \varepsilon</tex>? |
Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию. | Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию. | ||
Строка 43: | Строка 43: | ||
Выше мы доказали, что <tex>\sum\limits_{k=0}^n P_{n,k}(x) = 1</tex>, поэтому к последней сумме применима теорема о выпуклой мажоранте модуля непрерывности: | Выше мы доказали, что <tex>\sum\limits_{k=0}^n P_{n,k}(x) = 1</tex>, поэтому к последней сумме применима теорема о выпуклой мажоранте модуля непрерывности: | ||
− | :<tex>\sum\limits_{k = 0}^n P_{n, k}(x)\omega(f, \left|x - \frac kn\right|) \le \sum\limits_{k = 0}^n P_{n, k}(x)\omega^*(f \left|x - \frac kn\right|) \le</tex> (по [[Выпуклые функции#Неравенство Йенсена|неравенству Йенсена]]) <tex>\omega^*\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right) \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex> | + | :<tex>\sum\limits_{k = 0}^n P_{n, k}(x)\omega(f, \left|x - \frac kn\right|) \le \sum\limits_{k = 0}^n P_{n, k}(x)\omega^*(f, \left|x - \frac kn\right|) \le</tex> (по [[Выпуклые функции#Неравенство Йенсена|неравенству Йенсена]]) <tex>\omega^*\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right) \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex> |
Итак, <tex>|f(x) - B_n(f, x)| \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex>. Оценим сумму в правой части сверху, тогда при замене суммы оценкой правая часть только возрастет(в силу возрастания модуля непрерывности). | Итак, <tex>|f(x) - B_n(f, x)| \le 2\omega\left(f, \sum\limits_{k = 0}^n \left|x - \frac kn\right| P_{n, k}(x)\right)</tex>. Оценим сумму в правой части сверху, тогда при замене суммы оценкой правая часть только возрастет(в силу возрастания модуля непрерывности). | ||
Строка 73: | Строка 73: | ||
Вернемся к свертыванию суммы: | Вернемся к свертыванию суммы: | ||
− | :<tex>\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 C_n^k x^k (1-x)^{n-k} = \frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex> | + | :<tex>\sum\limits_{k = 0}^n \left(x - \frac kn\right)^2 C_n^k x^k (1-x)^{n-k} =</tex>(раскрывая квадрат и подставляя <tex>p</tex> и <tex>q</tex>)<tex>\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex> |
Первые две суммы в скобках можно посчитать по уже известным формулам, полученным из производящей функции, для вычисления третьей заметим, что <tex>k^2 = k(k-1) + k</tex>. | Первые две суммы в скобках можно посчитать по уже известным формулам, полученным из производящей функции, для вычисления третьей заметим, что <tex>k^2 = k(k-1) + k</tex>. | ||
:<tex>\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex> <tex> = \frac 1{n^2}(n^2 p^2 \cdot 1 - 2np \cdot np + np + n(n-1)p^2) = </tex> <tex dpi = "130">\frac{np - np^2}{n^2} = \frac{pq}n = \frac{x(1-x)}n</tex>, ч. т. д. | :<tex>\frac 1{n^2} \left( n^2 p^2 \sum\limits_{k = 0}^n C_n^k p^k q^{n-k} - 2np \sum\limits_{k = 0}^n k C_n^k p^k q^{n-k} + \sum\limits_{k = 0}^n k^2 C_n^k p^k q^{n-k}\right)</tex> <tex> = \frac 1{n^2}(n^2 p^2 \cdot 1 - 2np \cdot np + np + n(n-1)p^2) = </tex> <tex dpi = "130">\frac{np - np^2}{n^2} = \frac{pq}n = \frac{x(1-x)}n</tex>, ч. т. д. | ||
Строка 80: | Строка 80: | ||
{{Лемма | {{Лемма | ||
|statement=<tex>|f(x)-B_n(f, x)| \le 2 \omega(f, \frac 1{2 \sqrt n})</tex> | |statement=<tex>|f(x)-B_n(f, x)| \le 2 \omega(f, \frac 1{2 \sqrt n})</tex> | ||
+ | |proof= | ||
+ | Так как <tex>\omega(t)</tex> возрастает и <tex>\sqrt{\frac{x(1 - x)}{n}} \leq \sqrt{\frac1{4n}} = \frac1{2\sqrt{n}}</tex>(из <tex>x(1 - x) \leq \frac14 </tex>), можно в неравенстве <tex>|f(x) - B_n(x)| \leq 2\omega(f, \sqrt{\frac{x(1 -x)}{n}})</tex> заменить <tex>\sqrt{\frac{x(1 - x)}{n}}</tex> на <tex>\frac1{2\sqrt{n}}</tex>, получив требуемое. | ||
}} | }} | ||
Строка 87: | Строка 89: | ||
}} | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |statement= | ||
+ | Пусть функция <tex>f</tex> непрерывна на отрезке <tex>[a; b]</tex>. | ||
+ | Тогда <tex>\forall \varepsilon > 0\ \exists B_n \forall x \in [0; 1]: |f(x) - B_n(f, x)| < \varepsilon</tex> | ||
+ | |proof= | ||
+ | {{TODO|t=Доказательство}} | ||
+ | }} | ||
+ | |||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] |
Версия 11:04, 4 декабря 2010
Постановка задачи
В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный характер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома:
Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции.
Можно поставить иную задачу, которая является намного более сложной: пусть функция
непрерывна на отрезке . Существует ли некоторый полином (неважно, какой степени) такой, что ?Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию.
Заметим, что непрерывность функции является необходимым условием. Действительно, пусть
такова, что полином найдётся. Покажем, что необходимо непрерывна:- есть полином , "обслуживающий" на всём отрезке.
- .
Но полином непрерывен, а значит,
.Тогда
, то есть, непрерывна в точке .Положительный ответ на поставленный вопрос впервые был дан Вейерштрассом.
Теорема о существовании искомого полинома
Теорема (Вейерштрасс): | ||||||
Пусть функция - непрерывна на . Тогда - полином, такой, что | ||||||
Доказательство: | ||||||
Докажем сначала теорему Бернштейна, рассматривающую только функции, непрерывные на . Рассмотрим такую функцию . Определим полиномы:
Заметим, что .Далее, для сокращения записи положим .
Выше мы доказали, что , поэтому к последней сумме применима теорема о выпуклой мажоранте модуля непрерывности:
Итак, неравенству Коши для сумм . Оценим сумму в правой части сверху, тогда при замене суммы оценкой правая часть только возрастет(в силу возрастания модуля непрерывности). ПоВставим полученное неравенство в оценку: (все эти преобразования были нужны, потому что суммы с модулем трудно сворачиваются). Покажем теперь с помощью метода производящих функций, что .Для этого рассмотрим полином , где - произвольная конечная числовая последовательность (такой полином называют производящей функцией). Заметим, чтои поэтому
Положим теперь и рассмотрим производящую функциюС целью упрощения дальнейших выкладок обозначим .Т. к. , тоВернемся к свертыванию суммы:
Первые две суммы в скобках можно посчитать по уже известным формулам, полученным из производящей функции, для вычисления третьей заметим, что .
Для . Учитывая то, что возрастает, окончательно получаем:
По свойству модуля непрерывности
| ||||||
Теорема: |
Пусть функция непрерывна на отрезке .
Тогда |
Доказательство: |
TODO: Доказательство |