M-сводимость — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Литература)
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
|definition=Множество <tex>A</tex> '''m-сводится''' (является ''many-one reducible'', ''m-reducible'') ко множеству <tex>B</tex>, если существует всюду определённая вычислимая функция <tex>f : x\in A\Leftrightarrow f(x)\in B</tex>, то есть <tex>f(A) \subset B</tex> и <tex>f(\overline{A}) \subset \overline{B}</tex>. Обозначение: <tex>A\le_{m}B</tex>.
+
|definition=Множество <tex>A</tex> '''m-сводится''' (является ''many-one reducible'', ''m-reducible'') ко множеству <tex>B</tex>, если существует всюду определённая вычислимая функция <tex>f : x\in A\Leftrightarrow f(x)\in B</tex>, то есть <tex>f(A) \subset B</tex> и <tex>f(\overline{A}) \subset \overline{B}</tex>. Обозначение: <tex>A\leqslant_{m}B</tex>.
 
}}
 
}}
 
{{Определение
 
{{Определение
|definition=<tex>A</tex> '''m-эквивалентно''' (''many-one equivalent'', ''m-equivalent'') <tex>B</tex>, если <tex>A\le_{m}B</tex> и <tex>B\le_{m}A</tex>. Обозначение: <tex>A\equiv_{m}B</tex>.
+
|definition=<tex>A</tex> '''m-эквивалентно''' (''many-one equivalent'', ''m-equivalent'') <tex>B</tex>, если <tex>A\leqslant_{m}B</tex> и <tex>B\leqslant_{m}A</tex>. Обозначение: <tex>A\equiv_{m}B</tex>.
 
}}
 
}}
 
== Свойства ==
 
== Свойства ==
# <tex>A\le_{m}A</tex>.
+
# <tex>A\leqslant_{m}A</tex>.
 
#*'''Доказательство:''' <tex>f(x)=x</tex>.
 
#*'''Доказательство:''' <tex>f(x)=x</tex>.
# Если <tex>A\le_{m}B</tex> и <tex>B</tex> разрешимо, то <tex>A</tex> разрешимо.
+
# Если <tex>A\leqslant_{m}B</tex> и <tex>B</tex> разрешимо, то <tex>A</tex> разрешимо.
 
#*'''Доказательство:''' Пусть <tex>p</tex> — программа-разрешитель для <tex>B</tex>. Тогда для любого <tex>x\in A</tex> разрешитель должен вернуть значение <tex>p(f(x))</tex>.
 
#*'''Доказательство:''' Пусть <tex>p</tex> — программа-разрешитель для <tex>B</tex>. Тогда для любого <tex>x\in A</tex> разрешитель должен вернуть значение <tex>p(f(x))</tex>.
# Если <tex>A\le_{m}B</tex> и <tex>B</tex> перечислимо, то <tex>A</tex> перечислимо.
+
# Если <tex>A\leqslant_{m}B</tex> и <tex>B</tex> перечислимо, то <tex>A</tex> перечислимо.
 
#*'''Доказательство:''' Аналогично предыдущему свойству.
 
#*'''Доказательство:''' Аналогично предыдущему свойству.
# Если <tex>A\le_{m}B</tex> и <tex>B\le_{m}C</tex>, то <tex>A\le_{m}C</tex>.
+
# Если <tex>A\leqslant_{m}B</tex> и <tex>B\leqslant_{m}C</tex>, то <tex>A\leqslant_{m}C</tex>.
 
#*'''Доказательство:''' Если <tex>f:A\to B</tex> и <tex>g:B\to C</tex>, то m-сводящая функция <tex>h:A\to C</tex> выглядит так <tex>h(x) = g(f(x))</tex>.
 
#*'''Доказательство:''' Если <tex>f:A\to B</tex> и <tex>g:B\to C</tex>, то m-сводящая функция <tex>h:A\to C</tex> выглядит так <tex>h(x) = g(f(x))</tex>.
  
Строка 18: Строка 18:
 
{{Лемма
 
{{Лемма
 
|statement=
 
|statement=
Если <tex>A\le_{m}B</tex> и <tex>A</tex> неразрешимо, то <tex>B</tex> неразрешимо.
+
Если <tex>A\leqslant_{m}B</tex> и <tex>A</tex> неразрешимо, то <tex>B</tex> неразрешимо.
 
|proof=
 
|proof=
 
Следует из второго свойства.  
 
Следует из второго свойства.  
Строка 31: Строка 31:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Язык <tex>L</tex> '''сводится по Тьюрингу''' (является ''Turing reducible'') к языку <tex>M</tex>, если язык <tex>M</tex> является разрешимым с использованием <tex>L</tex> как оракула, обозначается как <tex>L \le_T M</tex>.
+
Язык <tex>L</tex> '''сводится по Тьюрингу''' (является ''Turing reducible'') к языку <tex>M</tex>, если язык <tex>M</tex> является разрешимым с использованием <tex>L</tex> как оракула, обозначается как <tex>L \leqslant_T M</tex>.
 
}}
 
}}
  
 
{{Определение
 
{{Определение
|definition=Язык <tex>L</tex> '''эквивалентен по Тьюрингу''' (''Turing equivalent'') языку <tex>M</tex>, если <tex>L \le_T M</tex> и <tex>M \le_T L</tex>, обозначается как <tex>L \equiv_T M</tex>.
+
|definition=Язык <tex>L</tex> '''эквивалентен по Тьюрингу''' (''Turing equivalent'') языку <tex>M</tex>, если <tex>L \leqslant_T M</tex> и <tex>M \leqslant_T L</tex>, обозначается как <tex>L \equiv_T M</tex>.
 
}}
 
}}
  
 
=== Свойства ===
 
=== Свойства ===
* рефлексивность: <tex> L \le_T L </tex>
+
* рефлексивность: <tex> L \leqslant_T L </tex>
* транзитивность: из <tex> L \le_T M </tex> и <tex> M \le_T N</tex> следует <tex> L \le_T N </tex>
+
* транзитивность: из <tex> L \leqslant_T M </tex> и <tex> M \leqslant_T N</tex> следует <tex> L \leqslant_T N </tex>
 
* Очевидно, что <tex>\equiv_T</tex> — отношение эквивалентности
 
* Очевидно, что <tex>\equiv_T</tex> — отношение эквивалентности
  
Строка 53: Строка 53:
 
}}
 
}}
  
На Т-степенях можно ввести частичный порядок: для <tex>d_1, d_2 \in \mathcal{D}_T, d_1 \le d_2</tex>, если для каких-то <tex>L \in d_1, M \in d_2: L \le_T M</tex>, определение корректно, так как порядок не будет зависеть от выбора представителя Т-степени.
+
На Т-степенях можно ввести частичный порядок: для <tex>d_1, d_2 \in \mathcal{D}_T, d_1 \le d_2</tex>, если для каких-то <tex>L \in d_1, M \in d_2: L \leqslant_T M</tex>, определение корректно, так как порядок не будет зависеть от выбора представителя Т-степени.
  
 
==== Свойства ====
 
==== Свойства ====

Версия 22:33, 21 ноября 2016

Определение:
Множество [math]A[/math] m-сводится (является many-one reducible, m-reducible) ко множеству [math]B[/math], если существует всюду определённая вычислимая функция [math]f : x\in A\Leftrightarrow f(x)\in B[/math], то есть [math]f(A) \subset B[/math] и [math]f(\overline{A}) \subset \overline{B}[/math]. Обозначение: [math]A\leqslant_{m}B[/math].


Определение:
[math]A[/math] m-эквивалентно (many-one equivalent, m-equivalent) [math]B[/math], если [math]A\leqslant_{m}B[/math] и [math]B\leqslant_{m}A[/math]. Обозначение: [math]A\equiv_{m}B[/math].

Свойства

  1. [math]A\leqslant_{m}A[/math].
    • Доказательство: [math]f(x)=x[/math].
  2. Если [math]A\leqslant_{m}B[/math] и [math]B[/math] разрешимо, то [math]A[/math] разрешимо.
    • Доказательство: Пусть [math]p[/math] — программа-разрешитель для [math]B[/math]. Тогда для любого [math]x\in A[/math] разрешитель должен вернуть значение [math]p(f(x))[/math].
  3. Если [math]A\leqslant_{m}B[/math] и [math]B[/math] перечислимо, то [math]A[/math] перечислимо.
    • Доказательство: Аналогично предыдущему свойству.
  4. Если [math]A\leqslant_{m}B[/math] и [math]B\leqslant_{m}C[/math], то [math]A\leqslant_{m}C[/math].
    • Доказательство: Если [math]f:A\to B[/math] и [math]g:B\to C[/math], то m-сводящая функция [math]h:A\to C[/math] выглядит так [math]h(x) = g(f(x))[/math].

Применение

Лемма:
Если [math]A\leqslant_{m}B[/math] и [math]A[/math] неразрешимо, то [math]B[/math] неразрешимо.
Доказательство:
[math]\triangleright[/math]
Следует из второго свойства.
[math]\triangleleft[/math]

Приведённая лемма позволяет доказывать алгоритмическую неразрешимость некоторой задачи, сводя к ней (а не наоборот!) другую, неразрешимость которой уже доказана.

Например:

Сведение по Тьюрингу

Определение:
Язык [math]L[/math] сводится по Тьюрингу (является Turing reducible) к языку [math]M[/math], если язык [math]M[/math] является разрешимым с использованием [math]L[/math] как оракула, обозначается как [math]L \leqslant_T M[/math].


Определение:
Язык [math]L[/math] эквивалентен по Тьюрингу (Turing equivalent) языку [math]M[/math], если [math]L \leqslant_T M[/math] и [math]M \leqslant_T L[/math], обозначается как [math]L \equiv_T M[/math].


Свойства

  • рефлексивность: [math] L \leqslant_T L [/math]
  • транзитивность: из [math] L \leqslant_T M [/math] и [math] M \leqslant_T N[/math] следует [math] L \leqslant_T N [/math]
  • Очевидно, что [math]\equiv_T[/math] — отношение эквивалентности


Т-степени

Обозначим за [math]\mathcal{D}_T[/math] множество классов эквивалентности языков по отношению [math]\equiv_T[/math], это множество будет множеством Т-степеней (тьюринговых степеней).


Определение:
Т-степенью языка [math]L[/math] называется его класс эквивалентности по отношению [math]\equiv_T[/math], то есть [math]\mathrm{deg}_T(L) = \{ M \mid L \equiv_T M \}[/math].


На Т-степенях можно ввести частичный порядок: для [math]d_1, d_2 \in \mathcal{D}_T, d_1 \le d_2[/math], если для каких-то [math]L \in d_1, M \in d_2: L \leqslant_T M[/math], определение корректно, так как порядок не будет зависеть от выбора представителя Т-степени.

Свойства

  • [math]\mathrm{R}[/math] — минимальный элемент в частичном порядке на Т-степенях. Очевидно из того, что класс разрешимых языков замкнут по использованию разрешимого языка в качестве оракула.
  • Любая пара Т-степеней [math]d_1, d_2 \in \mathcal{D}_T[/math] имеет наименьшую верхнюю границу [math]d_1 \lor d_2 \in \mathcal{D}_T[/math].

Тьюринговый скачок

Обозначим за [math]H[/math] язык программ, останавливающихся на пустом входе. Обозначим за [math]H^f[/math] язык программ, использующих [math]f[/math] в качестве оракула и останавливающихся на пустом входе.

Можно показать, что:

  • [math]f \lt _T H^f[/math]
  • Если [math]f \le_T g[/math], то [math]H^f \le_T H^g[/math]

Тогда тьюринговым скачком Т-степени [math]d[/math] называется Т-степень языка [math]H^L[/math], где [math]L[/math] — произвольный язык в [math]d[/math]. Заметим, что если [math]L \equiv_T M[/math], то [math]H^L \equiv_T H^M[/math], поэтому определение корректно. Оператор тьюрингова скачка обозначим как [math]J : \mathcal{D}_T \to \mathcal{D}_T[/math].

Литература