Примеры сведения к задачам поиска потока — различия между версиями
Sultazat (обсуждение | вклад) (→Пример №1) |
Sultazat (обсуждение | вклад) (→Пример №1) |
||
Строка 25: | Строка 25: | ||
Используя [[Алгоритм Форда-Фалкерсона, реализация с помощью поиска в глубину|алгоритм Форда-Фалкерсона]], найдём максимальный поток в сети. Согласно [[Теорема о декомпозиции|теореме о декомпозиции]], нахождение максимального потока эквивалентно тому, что мы нашли максимальное количество путей из истока в сток. Т.е. требуемый ответ на задачу равен максимальному потоку. | Используя [[Алгоритм Форда-Фалкерсона, реализация с помощью поиска в глубину|алгоритм Форда-Фалкерсона]], найдём максимальный поток в сети. Согласно [[Теорема о декомпозиции|теореме о декомпозиции]], нахождение максимального потока эквивалентно тому, что мы нашли максимальное количество путей из истока в сток. Т.е. требуемый ответ на задачу равен максимальному потоку. | ||
− | Время работы алгоритма Форда-Фалкерсона <tex>O(E|f|)</tex>. Первое замечание: <tex>E</tex> <tex>\leqslant</tex> <tex>4V</tex> (это следует из того, что из каждой вершины исходит не более 4 рёбер), т.е. <tex>E=O( | + | Время работы алгоритма Форда-Фалкерсона <tex>O(E|f|)</tex>. Первое замечание: <tex>E</tex> <tex>\leqslant</tex> <tex>4V</tex> <tex>\leqslant</tex> <tex>4NM</tex> (это следует из того, что из каждой вершины исходит не более 4 рёбер), т.е. <tex>E=O(NM)</tex>. Второе замечание: ответ не превосходит 4, т.к. можно закрасить клетку слева, справа, сверху и снизу от позиции монстра и он не сможет никуда двигаться, поэтому <tex>|f|</tex> можно считать константой. Итоговое время работы <tex>O(NM)</tex>. |
Версия 08:23, 25 декабря 2016
Пример №1
Задача: |
Дано поле размером N * M, некоторые клетки поля закрашены. В одной из незакрашенных клеток поля стоит монстр, он умеет ходить только по незакрашенным клеткам (из текущей клетки он может пойти только в ту клетку, с которой имеет общую сторону). Какое минимальное количество клеток нужно закрасить, чтобы монстр не смог выбраться за пределы поля? |
Сразу скажем, что выбраться за пределы поля эквивалентно тому, что монстр может дойти до какой-либо крайней клетки.
Покажем то, что минимальное количество клеток, которое нужно закрасить, равно максимальному количеству клеточно-непересекающихся путей из позиции монстра до крайних клеток поля. Очевидно, что ответ не больше, чем количество всех путей от монстра до крайних клеток. Сделаем ещё более строгое неравенство: ответ не больше, чем максимальное количество клеточно-непересекающихся путей, т.к. если взять какие-нибудь 2 пересекающихся пути и закрасить клетку в позиции, где они пересекаются, то блокируется выход за пределы поля сразу по 2 этим путям. С другой стороны, если закрасить клетку на каком-то из путей, то блокируется только этот путь, т.к. были взяты клеточно-непересекающиеся пути. Значит, ответ не меньше, чем количество таких путей. В итоге получаем то, что и хотели доказать.
Рассмотрим сеть, в которой вершинам будут соответствовать незакрашенные клетки поля, соседние незакрашенные клетки соединим ориентированными рёбрами с пропускной способностью 1. В качестве истока возьмём вершину, которой соответствует клетка монстра. Добавим в граф ещё одну вершину - сток, добавим рёбра из вершин, соответствующим крайним клеткам поля, в сток с пропускной способностью 1. Чтобы пути не пересекались по клеткам, раздвоим каждую вершину графа на 2 вершины: в одну будут только входить рёбра, из другой - только выходить рёбра, и сами эти вершины соединим ребром с пропускной способностью 1.
Используя алгоритм Форда-Фалкерсона, найдём максимальный поток в сети. Согласно теореме о декомпозиции, нахождение максимального потока эквивалентно тому, что мы нашли максимальное количество путей из истока в сток. Т.е. требуемый ответ на задачу равен максимальному потоку.
Время работы алгоритма Форда-Фалкерсона
. Первое замечание: (это следует из того, что из каждой вершины исходит не более 4 рёбер), т.е. . Второе замечание: ответ не превосходит 4, т.к. можно закрасить клетку слева, справа, сверху и снизу от позиции монстра и он не сможет никуда двигаться, поэтому можно считать константой. Итоговое время работы .