Алгоритм отмены цикла минимального среднего веса — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Наивный способ)
Строка 18: Строка 18:
 
===Наивный способ===
 
===Наивный способ===
 
Устроим [[Вещественный двоичный поиск |двоичный поиск]].
 
Устроим [[Вещественный двоичный поиск |двоичный поиск]].
Установим нижнюю и верхнюю границы величины среднего веса цикла <tex>l</tex> и <tex>r</tex> соответственно, вычислим серединное значение <tex>m</tex> и отнимем полученную величину <tex>m</tex> от всех ребер сети. Если теперь в нашей сети есть отрицательный цикл, значит существует цикл с меньшим средним весом, чем <tex>m</tex>. Тогда сдвигаем правую границу на <tex>m</tex>, иначе {{---}} левую.
+
Установим нижнюю и верхнюю границы величины среднего веса цикла <tex>l</tex> и <tex>r</tex> соответственно, вычислим серединное значение <tex>m</tex> и отнимем полученную величину <tex>m</tex> от всех ребер сети. Если теперь в нашей сети есть отрицательный цикл (этот факт можно проверить при помощи [[Алгоритм Форда-Беллмана #Нахождение отрицательного цикла|алгоритма Форда-Беллмана]]), значит существует цикл с меньшим средним весом, чем <tex>m</tex>. Тогда продолжим поиск среди значений в диапазоне от <tex>l</tex> до <tex>m</tex>, иначе {{---}} от <tex>m</tex> до <tex>r</tex>.
 
Такой алгоритм будет работать за <tex>O(\texttt{log} \frac{1}{\varepsilon} \cdot EV)</tex>, где <tex>\varepsilon</tex> {{---}} точность выбора величины среднего веса цикла.
 
Такой алгоритм будет работать за <tex>O(\texttt{log} \frac{1}{\varepsilon} \cdot EV)</tex>, где <tex>\varepsilon</tex> {{---}} точность выбора величины среднего веса цикла.
 +
 
===способ убрать <tex>\texttt{log} \frac{1}{\varepsilon}</tex> из оценки===
 
===способ убрать <tex>\texttt{log} \frac{1}{\varepsilon}</tex> из оценки===
  

Версия 01:31, 26 декабря 2016

В статье описывается один из сильно полиномиальных алгоритмов решения задачи о поиске потока минимальной стоимости.

Алгоритм

Приведенный алгоритм основан на идее алгоритма Клейна отмены цикла отрицательного веса. Выбор цикла минимального среднего веса вместо случайного делает алгоритм сильно полиномиальным.

Определение:
Сильно полиномиальными в контексте данной задачи называются алгоритмы, чья сложность полиномиально зависит от [math]V[/math] — числа вершин и [math]E[/math] — числа ребер графа.

Описание

Обозначим как [math]c_{f}(C)[/math] остаточную пропускную способность цикла [math]C[/math] при протекании в сети потока [math]f[/math]. Cтоимость цикла [math]C[/math] обозначим за [math]p(C)[/math], а длину (число входящих в него ребер) — за [math]\texttt{len}(C)[/math].

Определение:
Средним весом цикла будем называть отношение его стоимости к его длине [math]\mu (C)=\frac{p(C)}{\texttt{len}(C)}[/math]
  • Шаг1. Рассмотрим некоторый поток [math]f[/math].
  • Шаг2. Найдем цикл [math]C[/math], обладающий наименьшим средним весом. Если [math]\mu (C) \geq 0[/math], то [math]f[/math] — поток минимальной стоимости и алгоритм завершается.
  • Шаг3. Отменим цикл [math]C[/math], пустив по нему максимально возможный поток: [math]f = f + c_{f}(C)\cdot f_{C}[/math]. Перейдем к шагу 1.

Сложность

[math]O(VE\cdot VE^{2}\log{V})[/math], при этом [math]O(VE)[/math] времени тратится на поиск цикла минимального среднего веса.

Алгоритм поиска цикла минимального среднего веса

Наивный способ

Устроим двоичный поиск. Установим нижнюю и верхнюю границы величины среднего веса цикла [math]l[/math] и [math]r[/math] соответственно, вычислим серединное значение [math]m[/math] и отнимем полученную величину [math]m[/math] от всех ребер сети. Если теперь в нашей сети есть отрицательный цикл (этот факт можно проверить при помощи алгоритма Форда-Беллмана), значит существует цикл с меньшим средним весом, чем [math]m[/math]. Тогда продолжим поиск среди значений в диапазоне от [math]l[/math] до [math]m[/math], иначе — от [math]m[/math] до [math]r[/math]. Такой алгоритм будет работать за [math]O(\texttt{log} \frac{1}{\varepsilon} \cdot EV)[/math], где [math]\varepsilon[/math] — точность выбора величины среднего веса цикла.

способ убрать [math]\texttt{log} \frac{1}{\varepsilon}[/math] из оценки

Добавим к нашему графу вершину [math]s[/math] и ребра из нее во все остальные вершины. Рассмотрим алгоритм Форда-Беллмана и попросим его построить нам следущую квадратную матрицу:

d[i][u] // длина минимального пути от s до u ровно из i ребер

Тогда длина оптимального цикла [math]\mu^{*}[/math] минимального среднего веса вычисляется как [math]\min\limits_{u} {\max\limits_{k} {\frac{d[n][u]-d[k][u]}{n-k}}}[/math].

Почему это так? Грубо говоря, достаточно доказать для [math]\mu^{*}=0[/math], так как для других [math]\mu^{*}[/math] можно просто отнять его величину от всех ребер и получить рассматриваемый случай.

--- как же найти сам цикл Запомним, при каких [math]u[/math] и [math]k[/math] достигается этот минимум, и, используя [math]d[n][u][/math], по указателям предков поднимаемся. Как только мы зациклимся — мы нашли цикл минимального среднего веса.

Этот алогоритм работает за [math]O(VE)[/math].