Алгоритм Куна для поиска максимального паросочетания — различия между версиями
Строка 4: | Строка 4: | ||
|proof=Доказательство от противного! Допустим, что из х появилась дополняющая цепь относительно M'. Рассмотрим изменения, которые мы внесли в М вдоль дополняющей цепи, чтобы получить паросочетание М'. В этой цепи все промежуточные вершины были насыщенными, а концы свободные. После изменения вдоль этой цепи все вершины, лежащие на этой цепи станут насыщенными. Тогда появившаяся дополняющая цепь должна проходить хотя бы через одну из концевых вершин в той дополняющей цепи, относительно которой вносили изменения, поскольку иначе такая же дополняющая цепь была и в паросочетании М. Однако поскольку в паросочетании М концевые вершины не насыщены, то из вершины х в паросочетании М есть все равно есть дополняющая цепь. Надо рассмотреть часть дополняющей цепи В М', ограниченную концом текущей дополняющей цепи и концом той дополняющей цепи, вдоль которой вносили изменения, такую что вершина х будет промежуточной. Легко заметить что в такой цепи все промежуточные вершины насыщенные, а концы свободны, поэтому она является дополняющей. Значит, мы пришли к противоречию, поскольку в паросочетании М нет дополняющих цепей из вершины х. | |proof=Доказательство от противного! Допустим, что из х появилась дополняющая цепь относительно M'. Рассмотрим изменения, которые мы внесли в М вдоль дополняющей цепи, чтобы получить паросочетание М'. В этой цепи все промежуточные вершины были насыщенными, а концы свободные. После изменения вдоль этой цепи все вершины, лежащие на этой цепи станут насыщенными. Тогда появившаяся дополняющая цепь должна проходить хотя бы через одну из концевых вершин в той дополняющей цепи, относительно которой вносили изменения, поскольку иначе такая же дополняющая цепь была и в паросочетании М. Однако поскольку в паросочетании М концевые вершины не насыщены, то из вершины х в паросочетании М есть все равно есть дополняющая цепь. Надо рассмотреть часть дополняющей цепи В М', ограниченную концом текущей дополняющей цепи и концом той дополняющей цепи, вдоль которой вносили изменения, такую что вершина х будет промежуточной. Легко заметить что в такой цепи все промежуточные вершины насыщенные, а концы свободны, поэтому она является дополняющей. Значит, мы пришли к противоречию, поскольку в паросочетании М нет дополняющих цепей из вершины х. | ||
}} | }} | ||
+ | ==Алгоритм== | ||
+ | Пусть дан двудольный граф <tex>G(V, E)</tex> и требуется найти максимальное паросочетание в нём. Преобразуем его в граф <tex>G'(V', E')</tex> следующим образом | ||
+ | |||
+ | <tex>V' = V \cup \{s, t\}</tex> | ||
+ | |||
+ | Обазначим доли исходного графа как <tex>L</tex> и <tex>R</tex>. Тогда <tex>E' = {(s,u): u \in L} \cup {(u, v): u \in L, v \in R} \cup {(v, t): v \in R} </tex> | ||
+ | |||
+ | 1) Будем искать путь из <tex>s</tex> в <tex>t</tex> поиском в глубину. | ||
+ | |||
+ | 2) Если путь найден, инвертируем все ребра на пути. | ||
+ | |||
+ | 3) Если путь не был найден, значит текущее паросочетание является максимальным и алгоритм завершает работу. Иначе переходим к пункту 1) | ||
+ | |||
+ | В любой момент времени текущим паросочетанием будет множество ребер, направленных из <tex>R</tex> в <tex>L</tex>. |
Версия 12:02, 14 декабря 2010
Теорема: |
Если из вершины х не существует дополняющей цепи относительно паросочетание М, то если паросочетание М' получается из М изменением вдоль дополняющей цепи, то из х не существует дополняющей цепи в М'. |
Доказательство: |
Доказательство от противного! Допустим, что из х появилась дополняющая цепь относительно M'. Рассмотрим изменения, которые мы внесли в М вдоль дополняющей цепи, чтобы получить паросочетание М'. В этой цепи все промежуточные вершины были насыщенными, а концы свободные. После изменения вдоль этой цепи все вершины, лежащие на этой цепи станут насыщенными. Тогда появившаяся дополняющая цепь должна проходить хотя бы через одну из концевых вершин в той дополняющей цепи, относительно которой вносили изменения, поскольку иначе такая же дополняющая цепь была и в паросочетании М. Однако поскольку в паросочетании М концевые вершины не насыщены, то из вершины х в паросочетании М есть все равно есть дополняющая цепь. Надо рассмотреть часть дополняющей цепи В М', ограниченную концом текущей дополняющей цепи и концом той дополняющей цепи, вдоль которой вносили изменения, такую что вершина х будет промежуточной. Легко заметить что в такой цепи все промежуточные вершины насыщенные, а концы свободны, поэтому она является дополняющей. Значит, мы пришли к противоречию, поскольку в паросочетании М нет дополняющих цепей из вершины х. |
Алгоритм
Пусть дан двудольный граф
и требуется найти максимальное паросочетание в нём. Преобразуем его в граф следующим образом
Обазначим доли исходного графа как
и . Тогда1) Будем искать путь из
в поиском в глубину.2) Если путь найден, инвертируем все ребра на пути.
3) Если путь не был найден, значит текущее паросочетание является максимальным и алгоритм завершает работу. Иначе переходим к пункту 1)
В любой момент времени текущим паросочетанием будет множество ребер, направленных из
в .