Busy beaver — различия между версиями
ExileHell (обсуждение | вклад) |
ExileHell (обсуждение | вклад) |
||
Строка 7: | Строка 7: | ||
}} | }} | ||
---- | ---- | ||
− | {{ | + | {{Утверждение |
|statement= Функция <tex>BB(n)</tex> не убывает. | |statement= Функция <tex>BB(n)</tex> не убывает. | ||
|proof= Рассмотрим программу длины <tex>n</tex>, совершающую максимальное число шагов. Существует программа длины <tex>n + 1</tex>, которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, <tex>BB</tex> не убывает. | |proof= Рассмотрим программу длины <tex>n</tex>, совершающую максимальное число шагов. Существует программа длины <tex>n + 1</tex>, которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, <tex>BB</tex> не убывает. |
Версия 17:30, 2 января 2017
Поиск усердных бобров (англ. busy beaver) — известная задача в теории вычислимости. Под усердным бобром в теории вычислимости понимают машину Тьюринга с заданным числом состояний конечного автомата, которая будучи запущенной на пустой ленте, записывает на нее максимальное количество ненулевых символов и останавливается.
В данном конспекте будет рассмотрена функция, которая используется в этой задаче для подсчета числа шагов для завершения программы при определенном числе состояний.
Определение: |
— функция от натурального аргумента , равная максимальному числу шагов, которое может совершить программа длиной символов и затем остановиться. |
Утверждение: |
Функция не убывает. |
Рассмотрим программу длины | , совершающую максимальное число шагов. Существует программа длины , которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, не убывает.
Утверждение: |
вычислимой функции , то есть для всех кроме конечного числа выполнено растет быстрее любой всюду определенной неубывающей |
Докажем, что для любой вычислимой функции
:
k = десятичная запись числа n
m = f(k)
for i = 1 to m + 1
шаг программы
Каждая такая программа делает как минимум Так как мы рассматриваем шагов. в десятичной записи, то длина будет равна , где — длина кода без десятичной записи . Пусть — решение уравнения . Тогда для всех натуральных будет выполнено неравенство: . Данный переход корректен, так как мы доказали, что — монотонно возрастающая функция. Так как конечно, то мы всегда можем найти такие значения , при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано. |
Вывод: доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что
невычислима.Утверждение: |
Функция Busy beaver невычислима. |
По теореме о рекурсии, программа может знать свой исходный код. Значит, в неё можно написать функцию , которая вернёт строку — исходный код программы. Предположим, что функция Busy beaver вычислима. Тогда напишем такую программу
for i = 1..BB( ) + 1 do smth Такая программа всегда совершает больше шагов, чем функция от этой программы. А это невозможно, так равна максимальному числу шагов как раз этой программы. Получили противоречие. |
См. также
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)
- Английская Википедия — Busy beaver
- Федотов П.В., Царев Ф.Н., Шалыто А.А. — Задача поиска усердных бобров и ее решения