Матричное представление перестановок — различия между версиями
Sketcher (обсуждение | вклад) (→Свойства) |
Sketcher (обсуждение | вклад) |
||
Строка 152: | Строка 152: | ||
В итоге: <tex> t_1 ... t_kAt_{k+1} ... t_{k+l} = E </tex>. | В итоге: <tex> t_1 ... t_kAt_{k+1} ... t_{k+l} = E </tex>. | ||
− | Все элементарные матрицы обратимы и обратная к элементарной матрице | + | Все элементарные матрицы обратимы и обратная к элементарной матрице — это тоже элементарная матрица, следовательно: <tex> A = t_k^{-1} ... t_1^{-1}Et_{k+l}^{-1} ... t_{k+1}^{-1} = t_k^{-1} ... t_1^{-1}t_{k+l}^{-1} ... t_{k+1}^{-1} </tex>. |
Заметим, что с каждым шагом мы домнажаем на одну элементарную матрицу перестановок, следовательно всего будет <tex> (n-1) </tex> таких матриц. | Заметим, что с каждым шагом мы домнажаем на одну элементарную матрицу перестановок, следовательно всего будет <tex> (n-1) </tex> таких матриц. |
Версия 23:57, 2 января 2017
Определение
Определение: |
Матрица перестановки (англ. Permutation matrix) — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
Определение: |
Если матрица перестановок | получена из единичной матрицы перестановкой местами двух строк (или двух столбцов), то такая матрица называется элементарной матрицей перестановок (англ. Elementary permutation matrix).
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка
порядка :Соответствующей матрицей перестановки является матрица
вида:- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
Утверждение: |
Для любых двух перестановок их матрицы обладают свойством:
|
Рассмотрим эта сумма может быть равна нулю или единице, причем единице в том случае, если в - той строчке на - том столбце матрицы и в - той строчке на - том столбце матрицы стоят единицы. значит, что в перестановке на - том месте стоит элемент , и означает что в перестановке на - том месте стоит элемент , а означает что в перестановке, которой соответствует эта матрица, так же на - том месте стоит элемент . Но также известно, что . В результате если , то . Аналогичные рассуждения можно провести когда , и также получим, что . Поэтому для любых справедливо , а раз такое равентсво выполняется, то . |
Утверждение: |
Для любой матрицы перестановок существует обратная:
|
Так как перестановки являются группой, то для любой перестановки существует обратная. Так как любая перестановка имеет свою матрицу перестановки, то утверждение о существовании обратной матрицы перестановки также справедливо. |
Утверждение: |
Для любой матрицы перестановок справедливо:
|
Рассмотрим Теперь в обратную сторону где — символ Кронекера. |
Утверждение: |
При умножение слева элементарной матрицы перестановок на матрицу A происходит перестановка - й и - й строк матрицы A.
Умножение справа элементарной матрицы перестановок на матрицу A приводит к перестановке - го и - го столбцов матрицы A. |
Рассмотрим сначала умножение слева, т.е. матрицу , которую обозначим . Посчитаем чему равны элементы этой матрицы:
Действительно, по определению элементарной матрицы единица в строке стоит на - м месте, если , , на - м месте, если , и на - м месте, если . Итак, если , то - я строка матрицы B просто совпадает с - й строкой матрицы A. Далее, - я строка матрицы B совпадает с - й строкой матрицы A, и наоборот. Поэтому B получается из A перестановкой - й и - й строк.Теперь рассмотрим умножение справа. Пусть .
По определению элементарной матрицы единица в столбце стоит на наоборот. Поэтому B получается из A перестановкой - м месте, если , на - м месте, если , и на - м месте, если . Итак, если , то - й столбец матрицы B просто совпадает с - м столбцом матрицы A. Далее, - й столбец матрицы B совпадает с - м столбцом матрицы A, и - го и - го столбцов. |
Утверждение: |
Умножение справа матрицы перестановок на произвольной матрицу соответственно меняет местами её столбцы.
Умножение слева матрицы перестановок на произвольную матрицу меняет местами строки в этой матрице. |
Рассмотрим произвольную матрицу Доказательство второго утверждения аналогично. и матрицу перестановки : возьмем - тую строчку матрицы и умножим на - тый столбец , так как - тый столбец матрицы это двоичный вектор с одной единицей, то от - той строчки матрицы выживет один элемент, причем на - том месте. Умножив - тую строчку матрицы , на остальные столбцы матрицы , получим, что в - той строке матрицы элементы поменяются местами. Умножая другие строки матрицы , будем наблюдать похожее (так как умножаем на те же самые столбцы матрицы ). Таким образом получим, что в матрице столбцы поменялись местами. |
Утверждение: |
Квадрат элементарной матрицы перестановок есть единичная матрица. |
Любая элементарная матрица перестановок является симметричной матрицей, следовательно . Отсюда следует, что , а . |
Утверждение: |
Матрица перестановок -го порядка может быть представлена в виде произведения элементарных матриц перестановок ( ). |
Обозначим - элементарную матрицу, полученную из единичной путем изменения - й и - й строк. Рассмотрим матрицу перестановокВозьмем и перестановками строк (домножением соответствующей элементарной матрицей слева) или столбцов (домножением соответствующей элементарной матрицей справа) перемещаем его на первое место. Так как в каждой строке или столбце только одна единица, то получим: и так далее, пока не получится единичной матрицы.В итоге: .Все элементарные матрицы обратимы и обратная к элементарной матрице — это тоже элементарная матрица, следовательно: Заметим, что с каждым шагом мы домнажаем на одну элементарную матрицу перестановок, следовательно всего будет . таких матриц. |
Применение
Благодаря своим свойствам, матрицам перестановок нашлось применение в линейной алгебре. Они используются в элементарных преобразованиях матриц, то есть домножение слева или справа на матрицу перестановок, есть перестановка любых строк или столбов соответственно.
Пример: пусть задана матрица перестановки
, которая соответствует перестановке , и матрица ,тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.
См. также
Источники информации
- Матрица перестановки — Википедия
- Матрица перестановки
- Permutation matrix
- Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press.