Комбинаторные объекты — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Удаление вывода формул, добавление таблицы)
(Английские термины, ссылки)
Строка 9: Строка 9:
 
== Примеры комбинаторных объектов ==
 
== Примеры комбинаторных объектов ==
 
=== Битовые вектора ===
 
=== Битовые вектора ===
'''[[Получение объекта по номеру#Битовые вектора | Битовые вектора]]''' — последовательность нулей и единиц заданной длины.
+
'''[[Получение объекта по номеру#Битовые вектора | Битовые вектора]]''' (англ. ''bit vectors'') — последовательность нулей и единиц заданной длины.
  
 
=== Перестановки ===
 
=== Перестановки ===
'''Перестановки<ref>[https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0 Википедия — Перестановки]</ref>''' &mdash; упорядоченный набор чисел <tex>1, 2,\ldots, n</tex>, обычно трактуемый как биекция на множестве <tex>\{ 1, 2,\ldots, n \}</tex>, которая числу <tex>i</tex> ставит соответствие <tex>i</tex>-й элемент из набора.
+
'''Перестановки<ref>[https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0 Википедия — Перестановки]</ref>''' (англ. ''permutations'') &mdash; упорядоченный набор чисел <tex>1, 2,\ldots, n</tex>, обычно трактуемый как биекция на множестве <tex>\{ 1, 2,\ldots, n \}</tex>, которая числу <tex>i</tex> ставит соответствие <tex>i</tex>-й элемент из набора.
  
 
=== Перестановки с повторениями ===
 
=== Перестановки с повторениями ===
'''Перестановки с повторениями''' — те же перестановки, однако некоторые элементы могут встречаться несколько раз.
+
'''Перестановки с повторениями''' (англ. ''permutations with repetitions'') — те же перестановки, однако некоторые элементы могут встречаться несколько раз.
  
 
=== Размещения ===
 
=== Размещения ===
'''Размещение'''<ref>[https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5 Википедия — Размещения]</ref> из <tex>n</tex> по <tex>k</tex> &mdash; упорядоченный набор из <tex>k</tex> различных элементов некоторого <tex>n</tex>-элементного множества.
+
'''Размещение'''<ref>[https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5 Википедия — Размещения]</ref> (англ. ''arrangement'') из <tex>n</tex> по <tex>k</tex> &mdash; упорядоченный набор из <tex>k</tex> различных элементов некоторого <tex>n</tex>-элементного множества.
  
 
=== Размещения с повторениями ===
 
=== Размещения с повторениями ===
'''Размещение с повторениями''', составленное из данных <tex>n</tex> элементов по <tex>k</tex> — отображение множества <tex>k</tex> первых натуральных чисел <tex>1, 2, \ldots, k</tex> в данное множество <tex>\{a_1, a_2, \ldots, a_n\}</tex>.
+
'''Размещение с повторениями''' (англ. ''arrangement with repetitions''), составленное из данных <tex>n</tex> элементов по <tex>k</tex> — отображение множества <tex>k</tex> первых натуральных чисел <tex>1, 2, \ldots, k</tex> в данное множество <tex>\{a_1, a_2, \ldots, a_n\}</tex>.
  
 
=== Сочетания ===
 
=== Сочетания ===
'''Сочетания<ref>[https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D1%87%D0%B5%D1%82%D0%B0%D0%BD%D0%B8%D0%B5 Википедия — Сочетания]</ref>''' из <tex>n</tex> по <tex>k</tex> &mdash; набор <tex>k</tex> элементов, выбранных из данных <tex>n</tex> элементов.
+
'''Сочетания<ref>[https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D1%87%D0%B5%D1%82%D0%B0%D0%BD%D0%B8%D0%B5 Википедия — Сочетания]</ref>''' (англ. ''combinations'') из <tex>n</tex> по <tex>k</tex> &mdash; набор <tex>k</tex> элементов, выбранных из данных <tex>n</tex> элементов.
  
 
=== Сочетания с повторениями ===
 
=== Сочетания с повторениями ===
'''Сочетания с повторениями''' — те же сочетания, только теперь даны <tex>n</tex> типов элементов, из которых нужно выбрать <tex>k</tex> элементов, причем элементов каждого типа неограниченное количество, и элементы одного типа должны стоять подряд друг за другом.
+
'''Сочетания с повторениями''' (англ. ''combinations with repetitions'') — те же сочетания, только теперь даны <tex>n</tex> типов элементов, из которых нужно выбрать <tex>k</tex> элементов, причем элементов каждого типа неограниченное количество, и элементы одного типа должны стоять подряд друг за другом.
  
 
=== Разбиение на неупорядоченные слагаемые ===
 
=== Разбиение на неупорядоченные слагаемые ===
[[Нахождение количества разбиений числа на слагаемые | '''Разбиение''' числа '''на неупорядоченные слагаемые''']] &mdash; представление числа <tex>n</tex> в виде суммы слагаемых.
+
[[Нахождение количества разбиений числа на слагаемые | '''Разбиение''' числа '''на неупорядоченные слагаемые''']] (англ. ''partition'') &mdash; представление числа <tex>n</tex> в виде суммы слагаемых.
 +
{{main|Нахождение количества разбиений числа на слагаемые}}
  
 
=== Разбиение на подмножества ===
 
=== Разбиение на подмножества ===
[[Числа Стирлинга второго рода | '''Разбиение''' множества <math>X</math> '''на подмножества''']] — семейство непустых множеств <math>\{U_{\alpha}\},{\alpha \in A}</math>, где <math>A</math> — некоторое множество индексов, если:
+
[[Числа Стирлинга второго рода | '''Разбиение''' множества <math>X</math> '''на подмножества''']] (англ. ''partition of a set'') — семейство непустых множеств <math>\{U_{\alpha}\},{\alpha \in A}</math>, где <math>A</math> — некоторое множество индексов, если:
 
# <math>U_{\alpha} \cap U_{\beta} = \emptyset</math> для любых <math>\alpha, \beta \in A</math>, таких что <math>\alpha \not= \beta</math>;
 
# <math>U_{\alpha} \cap U_{\beta} = \emptyset</math> для любых <math>\alpha, \beta \in A</math>, таких что <math>\alpha \not= \beta</math>;
 
# <math>X = \bigcup\limits_{\alpha \in A} U_{\alpha}</math>.
 
# <math>X = \bigcup\limits_{\alpha \in A} U_{\alpha}</math>.
 +
{{main|Числа Стирлинга второго рода}}
  
== Количество комбинаторных объектов ==
+
== Число комбинаторных объектов ==
 
{| class="wikitable" border = 1
 
{| class="wikitable" border = 1
 
|'''Тип объекта'''||'''Число объектов'''
 
|'''Тип объекта'''||'''Число объектов'''
Строка 59: Строка 61:
 
|Разбиение на подмножества||[[Числа Стирлинга второго рода | Числа Стирлинга второго порядка]]
 
|Разбиение на подмножества||[[Числа Стирлинга второго рода | Числа Стирлинга второго порядка]]
 
|}
 
|}
 +
 +
== См. также ==
 +
*[[Генерация комбинаторных объектов в лексикографическом порядке | Генерация комбинаторных объектов в лексикографическом порядке]]
 +
*[[Получение следующего объекта | Получение следующего объекта]]
 +
*[[Получение номера по объекту | Получение номера по объекту]]
 +
*[[Получение объекта по номеру | Получение объекта по номеру]]
  
 
== Примечания ==
 
== Примечания ==

Версия 18:48, 4 января 2017


Определение:
Комбинаторные объекты (англ. combinatorial objects) — конечные множества, на элементы которых могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.


Определение:
Если два комбинаторных объекта, различающихся только порядком элементов, считаются различными, то они называются упорядоченными (англ. ordered).


Примеры комбинаторных объектов

Битовые вектора

Битовые вектора (англ. bit vectors) — последовательность нулей и единиц заданной длины.

Перестановки

Перестановки[1] (англ. permutations) — упорядоченный набор чисел [math]1, 2,\ldots, n[/math], обычно трактуемый как биекция на множестве [math]\{ 1, 2,\ldots, n \}[/math], которая числу [math]i[/math] ставит соответствие [math]i[/math]-й элемент из набора.

Перестановки с повторениями

Перестановки с повторениями (англ. permutations with repetitions) — те же перестановки, однако некоторые элементы могут встречаться несколько раз.

Размещения

Размещение[2] (англ. arrangement) из [math]n[/math] по [math]k[/math] — упорядоченный набор из [math]k[/math] различных элементов некоторого [math]n[/math]-элементного множества.

Размещения с повторениями

Размещение с повторениями (англ. arrangement with repetitions), составленное из данных [math]n[/math] элементов по [math]k[/math] — отображение множества [math]k[/math] первых натуральных чисел [math]1, 2, \ldots, k[/math] в данное множество [math]\{a_1, a_2, \ldots, a_n\}[/math].

Сочетания

Сочетания[3] (англ. combinations) из [math]n[/math] по [math]k[/math] — набор [math]k[/math] элементов, выбранных из данных [math]n[/math] элементов.

Сочетания с повторениями

Сочетания с повторениями (англ. combinations with repetitions) — те же сочетания, только теперь даны [math]n[/math] типов элементов, из которых нужно выбрать [math]k[/math] элементов, причем элементов каждого типа неограниченное количество, и элементы одного типа должны стоять подряд друг за другом.

Разбиение на неупорядоченные слагаемые

Разбиение числа на неупорядоченные слагаемые (англ. partition) — представление числа [math]n[/math] в виде суммы слагаемых.

Разбиение на подмножества

Разбиение множества [math]X[/math] на подмножества (англ. partition of a set) — семейство непустых множеств [math]\{U_{\alpha}\},{\alpha \in A}[/math], где [math]A[/math] — некоторое множество индексов, если:

  1. [math]U_{\alpha} \cap U_{\beta} = \emptyset[/math] для любых [math]\alpha, \beta \in A[/math], таких что [math]\alpha \not= \beta[/math];
  2. [math]X = \bigcup\limits_{\alpha \in A} U_{\alpha}[/math].

Число комбинаторных объектов

Тип объекта Число объектов
Битовые вектора [math]2^{n}[/math]
Перестановки [math]P_n = n![/math]
Перестановки с повторениями [math]\frac{(k_1 + k_2 + \ldots + k_n)!}{k_1!k_2!\ldots k_n!}[/math]
Размещения [math]A^{k}_n = \frac{n!}{(n - k)!}[/math]
Размещения с повторениями [math]n^k[/math]
Сочетания [math]C^{k}_n = \frac{n!}{k!(n - k)!}[/math]
Сочетания с повторениями [math]\widetilde{C}^k_n = \frac{(n + k - 1)!}{k!(n - 1)!} = C^k_{n + k - 1}[/math]
Разбиение на неупорядоченные слагаемые Нахождение количества разбиений числа на слагаемые
Разбиение на подмножества Числа Стирлинга второго порядка

См. также

Примечания

Источники информации