Алгоритм отмены цикла минимального среднего веса — различия между версиями
(→Корректность) |
(→Корректность) |
||
| Строка 26: | Строка 26: | ||
:Добавим вершину <tex>a</tex> и проведем из нее ребро стоимости <tex>0</tex> во все вершины графа <tex>G_{f}</tex>. В качестве <tex>\varphi(u)</tex> выберем стоимость минимального пути из <tex>a</tex> в <tex>u</tex>. | :Добавим вершину <tex>a</tex> и проведем из нее ребро стоимости <tex>0</tex> во все вершины графа <tex>G_{f}</tex>. В качестве <tex>\varphi(u)</tex> выберем стоимость минимального пути из <tex>a</tex> в <tex>u</tex>. | ||
| − | :Рассмотрим теперь некоторое ребро <tex>uv</tex>. Понятно, что <tex>\varphi(v) \leqslant \varphi(u) + p(uv)</tex>. (Здесь сравниваются минимальный путь <tex>a \rightsquigarrow v</tex> и путь <tex>a \rightsquigarrow u \rightarrow v</tex>. Перенеся <tex>\varphi(v)</tex> в другую часть неравенства, получаем <tex>0 \leqslant \varphi(u) + p(uv) - \varphi(v)</tex>, что и требовалось доказать.}} | + | :Рассмотрим теперь некоторое ребро <tex>uv</tex>. Понятно, что <tex>\varphi(v) \leqslant \varphi(u) + p(uv)</tex>. (Здесь сравниваются минимальный путь <tex>a \rightsquigarrow v</tex> и путь <tex>a \rightsquigarrow u \rightarrow v</tex>. Перенеся <tex>\varphi(v)</tex> в другую часть неравенства, получаем <tex>0 \leqslant \varphi(u) + p(uv) - \varphi(v)</tex> или <tex>0 \leqslant p_{\varphi}(uv)</tex>, что и требовалось доказать.}} |
| + | {{Определение | ||
| + | |definition=Будем говорить, что поток <tex>f</tex> {{---}} '''<tex>\varepsilon</tex>-оптимальный''' (англ. ''<tex>\varepsilon</tex>-optimal''), если <tex>\exists \varphi</tex> такая, что <tex>\forall uv: c_{f}(uv) > 0 \qquad p_{\varphi}(uv) \geqslant -\varepsilon</tex>.}} | ||
===Сложность=== | ===Сложность=== | ||
Версия 23:01, 4 января 2017
В статье описывается один из сильно полиномиальных алгоритмов решения задачи о поиске потока минимальной стоимости.
Содержание
Алгоритм
Приведенный алгоритм основан на идее алгоритма Клейна отмены цикла отрицательного веса. Выбор цикла минимального среднего веса вместо случайного делает алгоритм сильно полиномиальным.
| Определение: |
| Сильно полиномиальными (англ. strongly polynomial) в контексте данной задачи называются алгоритмы, чья сложность полиномиально зависит от и . |
Описание
Обозначим как остаточную пропускную способность цикла при протекании в сети потока . Cтоимость цикла обозначим за , а длину (число входящих в него ребер) — за .
| Определение: |
| Средним весом (англ. mean weight) цикла будем называть отношение его стоимости к его длине |
- Шаг 1. Рассмотрим некоторый поток .
- Шаг 2. Найдем цикл , обладающий наименьшим средним весом. Если , то — поток минимальной стоимости и алгоритм завершается.
- Шаг 3. Отменим цикл , пустив по нему максимально возможный поток: . Перейдем к шагу 1.
Корректность
Пусть — поток минимальной стоимости. Введем на нашей сети функцию потенциалов .
| Определение: |
| Приведенной стоимостью (англ. reduced cost) ребра назовем следующую величину: . |
Иными словами, приведенная стоимость — это сколько нужно потратить денег, чтобы перевести единицу жидкости из в . (Ее нужно купить в , перевезти из в и продать в .)
| Лемма: |
Если — поток минимальной стоимости, то такое, что |
| Доказательство: |
|
| Определение: |
| Будем говорить, что поток — -оптимальный (англ. -optimal), если такая, что . |
Сложность
, при этом времени тратится на поиск цикла минимального среднего веса.
Алгоритм поиска цикла минимального среднего веса
Наивный способ
Устроим двоичный поиск. Установим нижнюю и верхнюю границы величины среднего веса цикла и соответственно, вычислим серединное значение и отнимем полученную величину от всех ребер сети. Если теперь в нашей сети есть отрицательный цикл (этот факт можно проверить при помощи алгоритма Форда-Беллмана), значит существует цикл с меньшим средним весом, чем . Тогда продолжим поиск среди значений в диапазоне от до , иначе — от до . Такой алгоритм будет работать за , где — точность выбора величины среднего веса цикла.
Продвинутый алгоритм
Добавим к нашему графу вершину и ребра из нее во все остальные вершины. Запустим алгоритм Форда-Беллмана и попросим его построить нам квадратную матрицу со следующим условием: — длина минимального пути от до ровно из ребер. Тогда длина оптимального цикла минимального среднего веса вычисляется как .
Достаточно будет доказать это правило для , так как для других можно просто отнять эту величину от всех ребер и получить снова случай с .
Чтобы найти цикл после построения матрицы , запомним, при каких и достигается оптимальное значение , и, используя , поднимемся по указателям предков. Как только мы попадем в уже посещенную вершину — мы нашли цикл минимального среднего веса.
Этот алогоритм работает за .
См. также
- Использование потенциалов Джонсона при поиске потока минимальной стоимости
- Сведение задачи о назначениях к задаче о потоке минимальной стоимости