Метод четырёх русских для умножения матриц — различия между версиями
Alexandra (обсуждение | вклад) (→Простое решение) |
Alexandra (обсуждение | вклад) м (→Сжатие матриц) |
||
| Строка 16: | Строка 16: | ||
Аналогично поступим с матрицей <tex>B</tex>, вместо строк деля столбцы. Получим матрицу <tex dpi=140>B'_{\lceil\frac nk\rceil\times n}</tex>. | Аналогично поступим с матрицей <tex>B</tex>, вместо строк деля столбцы. Получим матрицу <tex dpi=140>B'_{\lceil\frac nk\rceil\times n}</tex>. | ||
| − | Теперь, если вместо произведения матриц <tex>A</tex> и <tex>B</tex> считать произведение новых матриц <tex>A'</tex> и <tex>B'</tex>, воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы <tex>C</tex> будет получаться уже за время, пропорциональное <tex>\lceil \ | + | Теперь, если вместо произведения матриц <tex>A</tex> и <tex>B</tex> считать произведение новых матриц <tex>A'</tex> и <tex>B'</tex>, воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы <tex>C</tex> будет получаться уже за время, пропорциональное <tex>\lceil \dfrac{n}{k} \rceil</tex> вместо <tex>n</tex>, и время произведения матриц сократится с <tex>O(n^3)</tex> до <tex dpi=140>O(n^2 \cdot\dfrac nk) = O(\dfrac{n^3}{k}) </tex>. |
== Оценка сложности алгоритма и выбор k == | == Оценка сложности алгоритма и выбор k == | ||
Версия 23:41, 8 января 2017
Дано две квадратных матрицы и , состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю .
Содержание
Простое решение
Если мы будем считать произведение матриц по определению , то сложность работы алгоритма составит — каждый из элементов результирующей матрицы вычисляется за время, пропорциональное .
Сейчас будет показано, как немного уменьшить это время.
Сжатие матриц
Для выполнения сжатия матриц выполним следующий предподсчёт : для всех возможных пар двоичных векторов длины подсчитаем и запомним их скалярное произведение по модулю .
Возьмём первую матрицу. разделим каждую её строку на куски размера . Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине (последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу .
Аналогично поступим с матрицей , вместо строк деля столбцы. Получим матрицу .
Теперь, если вместо произведения матриц и считать произведение новых матриц и , воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы будет получаться уже за время, пропорциональное вместо , и время произведения матриц сократится с до .
Оценка сложности алгоритма и выбор k
Оценим асимптотику данного алгоритма.
- Предподсчёт скалярных произведений работает за .
- Создание матриц и —
- Перемножение полученных матриц —
Итого: . Выбрав , получаем требуемую асимптотику
Пример работы алгоритма
Рассмотрим работу алгоритма на примере перемножения двух матриц и , где
,
, то предподсчитаем все скалярные произведения:
Для удобства каждому битовому вектору будет соответствовать двоичное число с ведущими нулями, т.е. в данном случае имеем числа , , , . Ниже приведена таблица, в которой записаны все искомые произведения:
Согласно соглашению относительно битовых векторов и двоичных чисел получим новые матрицы и :
,
Перемножим эти матрицы по модулю два с использованием нашего предпосчета:
Матрица — искомая.
Источники информации
- Gregory V. Bard — Accelerating Cryptanalysis with the Method of Four Russians. July 22, 2006. Страница 5