PS-полнота задачи Generalized geography — различия между версиями
Sancho (обсуждение | вклад) (рисунки) |
Sancho (обсуждение | вклад) (рисунок в доказательстве) |
||
Строка 34: | Строка 34: | ||
=== Доказательство принадлежности задачи классу PSH === | === Доказательство принадлежности задачи классу PSH === | ||
− | Для доказательства этого факта сведем задачу о | + | Для доказательства этого факта сведем задачу о выполнимости булевой формулы с предваряющими кванторами в форме КНФ (эта задача PS-трудная) к Generalized Geography за полиномиальное время. |
− | Булева формула с кванторами имеет следующий вид: φ = Q<sub>1</sub>''x''<sub>1</sub> Q<sub>2</sub>''x''<sub>2</sub> Q<sub>3</sub>''x''<sub>3</sub> ...''Q<sub>k</sub>x<sub>k</sub>''(ψ) где ''Q< | + | Булева формула с кванторами имеет следующий вид: φ = Q<sub>1</sub>''x''<sub>1</sub> Q<sub>2</sub>''x''<sub>2</sub> Q<sub>3</sub>''x''<sub>3</sub> ...''Q<sub>k</sub>x<sub>k</sub>''(ψ) где ''Q<sub>i</sub>'' квантор ∃ или ∀. Заметим, что любую такую формулу можно преобразовать к виду φ = ∃''x''<sub>1</sub> ∀''x''<sub>2</sub> ∃''x''<sub>3</sub> ...∃''x<sub>k</sub>''(ψ) , добавив необходимое количество переменных с кванторами. Если булева формула возвращает TRUE после ходов игроков По-любому и Существует, то выиграл Существует, иначе выиграл По-любому. |
− | Построив аналогичный | + | [[Файл:Generalized_geography_3.png]] |
+ | |||
+ | Построив граф, аналогичный приведенному на рисунке, для любой булевой формулы с кванторами, мы сможем свести задачу о выигрывании игрока Существует к задаче о наличии выигрышной стратегии у первого игрока в Generalized Geography. | ||
Левый столбец описывает процедуру выборки игроками значений переменных, если игрок выбирает TRUE, он идет в левую сторону, иначе в правую. | Левый столбец описывает процедуру выборки игроками значений переменных, если игрок выбирает TRUE, он идет в левую сторону, иначе в правую. |
Версия 16:07, 29 марта 2010
Содержание
Формулировка задачи
Города (Geography) - игра, в которой игроки по очереди называют города со всего мира. Каждый город должен начинаться с той буквы, на которую заканчивается предыдущий, повторы запрещены. Игра начинается с любого города, и заканчивается, когда игрок проигрывает и не может назвать новый город.
Графическая модель
Для визуализации задачи можно построить ориентированный граф, где каждая вершина - имя города, а ребро из А в Б означает, что город Б начинается на ту же букву, на которую заканчивается город А. Ход игрока - переход из текущей вершины в новую, ранее не посещенную, по соответствующему ребру. Проигрывает тот, кто не может сделать ни одного перехода. Например, граф для игры в городки в штате Мичиган может выглядеть так:
В игре Generalized Geography (Обобщенные города) мы заменяем граф с городами на некоторый абстрактный ориентированный граф. Игроки по очереди переходят из вершины в вершину, и проигрывает тот, кто не может сделать новый ход (перейти в ранее не посещенную вершину).
Рассмотрим пример такой игры. Пусть P1 - игрок, который ходит первым, и P2 - игрок, который ходит вторым. Здесь первый игрок обладает следующей выигрышной стратегией(игра начинается с первой вершины): делает ход в вершину 2, после чего второй игрок переходит в вершину 4, так как это единственный вариант. Первый игрок ходит в вершину 5, и второй выбирает между вершинами 3 и 7. Но независимо от выбора второго игрока, первый может перейти в вершину 9, откуда второй игрок никуда не может пойти.
Утверждение
Сформулируем задачу так: по данному ориентированному графу выяснить, обладает ли первый игрок выигрышной стратегией, стартуя в вершине с номером х.
Эта задача PS-полна.
Доказательство
Доказательство принадлежности задачи классу PS
Чтобы показать, что задача принадлежит классы PS, предъявим алгоритм, работающий на полиномиальной памяти, определяющий, обладает ли игрок выигрышной стратегией находясь в вершине v графа G.
Алгоритм M(<G,v>):
1. Если из вершины, в которой находится игрок, не ведет ни одного ребра в непосещенные ранее вершины, то вернем FALSE, мы проиграли.
2. Иначе запустим этот же алгоритм от всех вершин, в которые можно пойти, и если везде вернется TRUE, вернем FALSE, куда бы мы ни пошли, второй игрок выиграет. Если же хоть из одной вершины функция вернула FALSE, то вернем TRUE, в этой вершине второй игрок проигрывает.
Этот алгоритм перебором находит выигрышную стратегию для первого игрока, и очевидно, требует полиномиальную память: на каждом шаге одна или более вершин помечаются как посещенные, и более не обрабатываются.
Доказательство принадлежности задачи классу PSH
Для доказательства этого факта сведем задачу о выполнимости булевой формулы с предваряющими кванторами в форме КНФ (эта задача PS-трудная) к Generalized Geography за полиномиальное время.
Булева формула с кванторами имеет следующий вид: φ = Q1x1 Q2x2 Q3x3 ...Qkxk(ψ) где Qi квантор ∃ или ∀. Заметим, что любую такую формулу можно преобразовать к виду φ = ∃x1 ∀x2 ∃x3 ...∃xk(ψ) , добавив необходимое количество переменных с кванторами. Если булева формула возвращает TRUE после ходов игроков По-любому и Существует, то выиграл Существует, иначе выиграл По-любому.
Построив граф, аналогичный приведенному на рисунке, для любой булевой формулы с кванторами, мы сможем свести задачу о выигрывании игрока Существует к задаче о наличии выигрышной стратегии у первого игрока в Generalized Geography.
Левый столбец описывает процедуру выборки игроками значений переменных, если игрок выбирает TRUE, он идет в левую сторону, иначе в правую.
Зафиксировав значения переменных, игрок По-любому (т.к. в нашей КНФ-формуле с предворяющими кванторами последний квантор Существует) выбирает скобку, значение которой может быть FALSE (тогда он выиграет!). На рисунке каждая скобка - отдельная вершина ci.
После того, как игрок По-Любому зафиксировал скобку, игрок Существует выбирает переменную, значение которой не ноль (игроки уже зафиксировали значения переменных в самом начале) и делает переход в соответсвующую вершинку. Т.к. значение этой переменной не ноль, то игрок По-любому не сможет никуда пойти из этой вершины. Для этого проведем ребра из каждый скобки в вершины, соответствующие выбору TRUE или FALSE значений переменных.