Задача коммивояжера, ДП по подмножествам — различия между версиями
Строка 1: | Строка 1: | ||
− | Задача о коммивояжере (англ. '''travelling salesman problem''') - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из <tex> N </tex> точек на плоскости. | + | Задача о коммивояжере (англ. '''travelling - salesman problem''') - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из <tex> N </tex> точек на плоскости. |
== Формулировка задачи == | == Формулировка задачи == | ||
Строка 22: | Строка 22: | ||
Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>m_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>m</tex>. | Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>m_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>m</tex>. | ||
− | Обозначим <tex>dp[i][m]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex> | + | Обозначим <tex>dp[i][m]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>m_j = 1</tex> (т.е. <tex>m</tex> - подмножество вершин исходного графа, которые осталось посетить). |
Конечное состояние - когда находимся в 0-й вершине, все вершины посещены (т.е. <tex>i = 0</tex>, <tex>m = 0</tex>). Для остальных состояний перебираем все возможные переходы из i-й вершины в одну из непосещенных ранее и выбираем способ, дающий минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>). | Конечное состояние - когда находимся в 0-й вершине, все вершины посещены (т.е. <tex>i = 0</tex>, <tex>m = 0</tex>). Для остальных состояний перебираем все возможные переходы из i-й вершины в одну из непосещенных ранее и выбираем способ, дающий минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>). | ||
Строка 30: | Строка 30: | ||
<tex>dp[i][m] = 0</tex>, если <tex>i = 0</tex> и <tex>m = 0</tex> | <tex>dp[i][m] = 0</tex>, если <tex>i = 0</tex> и <tex>m = 0</tex> | ||
− | |||
<tex>dp[i][m] = min_{j: m_j=1, (i, j) \in E} \begin{Bmatrix} d(i, j) + dp[j][m - 2^j] \end{Bmatrix}</tex>, если <tex>i\neq 0</tex> и <tex> m \neq 0 </tex> | <tex>dp[i][m] = min_{j: m_j=1, (i, j) \in E} \begin{Bmatrix} d(i, j) + dp[j][m - 2^j] \end{Bmatrix}</tex>, если <tex>i\neq 0</tex> и <tex> m \neq 0 </tex> | ||
Строка 39: | Строка 38: | ||
Восстановить сам цикл несложно. Для этого воспользуемся соотношением <tex> dp[i][m] = d(i, j) + dp[j][m - 2^j] </tex> . Начнем с состояния <tex> i = 0 </tex>,<tex> m = 2^n - 1</tex>, найдем вершину <tex>j</tex>, для которой выполняется указанное соотношение, добавим <tex>j</tex> в ответ, пересчитаем текущее состояние как <tex>i = j</tex>, <tex> m = m - 2^j </tex>. Процесс заканчивается в состоянии <tex>i = 0</tex>, <tex> m = 0 </tex>. | Восстановить сам цикл несложно. Для этого воспользуемся соотношением <tex> dp[i][m] = d(i, j) + dp[j][m - 2^j] </tex> . Начнем с состояния <tex> i = 0 </tex>,<tex> m = 2^n - 1</tex>, найдем вершину <tex>j</tex>, для которой выполняется указанное соотношение, добавим <tex>j</tex> в ответ, пересчитаем текущее состояние как <tex>i = j</tex>, <tex> m = m - 2^j </tex>. Процесс заканчивается в состоянии <tex>i = 0</tex>, <tex> m = 0 </tex>. | ||
− | |||
− | |||
− | |||
− | |||
Данное решение требует <tex>O(2^nn)</tex> памяти и <tex>O(2^nn^2)</tex> времени. | Данное решение требует <tex>O(2^nn)</tex> памяти и <tex>O(2^nn^2)</tex> времени. |
Версия 07:10, 17 декабря 2010
Задача о коммивояжере (англ. travelling - salesman problem) - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из
точек на плоскости.Содержание
Формулировка задачи
Коммивояжер должен посетить
городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?Варианты решения
Задача о коммивояжере относится к классу NP-полных задач. Рассмотрим два варианта решения.
Перебор перестановок
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все
всевозможных перестановок вершин полного графа, подсчитать для перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших .Динамическое программирование по подмножествам
Задача о коммивояжере сводится к поиску кратчайшего гамильтонова пути в графе.
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе
вершин, пронумерованных от до и каждое ребро имеет некоторый вес . Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.Зафиксируем начальную вершину
и будем искать гамильтонов цикл наименьшей стоимости - путь от до , проходящий по всем вершинам(кроме первоначальной) один раз. Т.к. искомый цикл проходит через вершину, то выбор не имеет значения. Поэтому будем считать .Подмножества вершин будем кодировать битовыми векторами, обозначим
значение -ого бита в векторе .Обозначим
как наименьшую стоимость пути из вершины в вершину , проходящую (не считая вершины ) единожды по всем тем и только тем вершинам , для которых (т.е. - подмножество вершин исходного графа, которые осталось посетить).Конечное состояние - когда находимся в 0-й вершине, все вершины посещены (т.е.
, ). Для остальных состояний перебираем все возможные переходы из i-й вершины в одну из непосещенных ранее и выбираем способ, дающий минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как ).То есть,
считается по следующим соотношениям:, если и
, если и
, если , и множество возможных переходов пусто.
Стоимостью минимального гамильтонова цикла в исходном графе будет значение
- стоимость пути из -й вершины в -ю, при необходимости посетить все вершины.Восстановить сам цикл несложно. Для этого воспользуемся соотношением
. Начнем с состояния , , найдем вершину , для которой выполняется указанное соотношение, добавим в ответ, пересчитаем текущее состояние как , . Процесс заканчивается в состоянии , .Данное решение требует
памяти и времени.Источники
И.В.Романовский - Дискретный анализ;
Корман, Риверст, Лейзерсон, Штайн - Алгоритмы: построение и анализ;