Простые числа — различия между версиями
м (→Свойства простых чисел) |
|||
Строка 9: | Строка 9: | ||
}} | }} | ||
+ | Согласно определениям множество натуральных чисел разбивается на <tex>3</tex> подмножества: | ||
+ | # простые числа, | ||
+ | # составные числа | ||
+ | # число <tex>1</tex>, которые не причисляется ни к простым, ни к составным числам. | ||
==Свойства простых чисел== | ==Свойства простых чисел== |
Версия 19:54, 27 января 2017
Определение: |
Натуральное число называется простым, если и не имеет положительных делителей отличных от и |
Определение: |
Натуральное число называется составным, если имеет по крайней мере один положительный делитель отличный от и . |
Согласно определениям множество натуральных чисел разбивается на подмножества:
- простые числа,
- составные числа
- число , которые не причисляется ни к простым, ни к составным числам.
Свойства простых чисел
Утверждение (1): |
делится без остатка на . , — различные простые числа, то не |
Положительными делителями простого числа | являются только и . Простое число и . Значит не делится на .
Утверждение (2): |
Для любого натурального числа , наименьший, отличный от положительный делитель всегда является простым числом. |
Рассмотрим множество Пусть , состоящее из положительных, отличные от делители числа . Множество не пусто, так как . Значит в множестве существует наименьшее число . не простое, тогда существует такое, что и делится на . Так как делится на , то делится на . Значит не наименьшее число в множестве . Получили противоречие. Значит простое число. |
По утверждению Решето Эратосфена".
мы получаем алгоритм для поиска простых чисел "Множество простых чисел
Утверждение: |
Множество простых чисел бесконечно. |
Пусть множество простых чисел конечно и состоит из чисел , где — последнее, самое большое простое число.Рассмотрим число Значит число . Число не делится на числа , так как при делении на эти числа получится остаток . (по утв. ). C другой стороны . Значит предположение, что множество простых чисел конечно неверно. |
Последовательность простых чисел начинается так:
См. также
- Натуральные и целые числа
- Основная теорема арифметики
- Теоремы о простых числах
- Разложение на множители (факторизация)
Источники инфомации
- А.А. Бухштаб. "Теория чисел" — Просвещение. 1966 г. — с. 28 - 33.
- И. М. Виноградов. "Основы теории чисел" — c. 18 - 20.