Арифметические действия с формальными степенными рядами — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «Суммой двух производящих функций <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> ...»)
 
Строка 16: Строка 16:
 
{{Теорема  
 
{{Теорема  
 
|about = об обратной функции
 
|about = об обратной функции
|statement= Пусть функция <tex>B(t) = b_1 t + b_2 t^2 + b_3 t^3 + \dots</tex> такова, что <tex>B(0) = b_0 = 0</tex>, а <tex>b_1 \ne 0</tex>. Тогда существуют такие функции <tex> A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots</tex>, <tex>A(0) = 0</tex> и <tex>C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots</tex>, <tex>C(0) = 0</tex>, что <tex>A(B(t)) = t</tex> и <tex>B(C(u)) = u</tex>. При этом, функции <tex>A</tex> и <tex>C</tex> единственны. Функция <tex>A</tex> называется левой обратной, а функция <tex>C</tex> {{---}} правой обратной к функции <tex>B</tex>.
+
|statement = Пусть функция <tex>B(t) = b_1 t + b_2 t^2 + b_3 t^3 + \dots</tex> такова, что <tex>B(0) = b_0 = 0</tex>, а <tex>b_1 \ne 0</tex>. Тогда существуют такие функции <tex> A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots</tex>, <tex>A(0) = 0</tex> и <tex>C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots</tex>, <tex>C(0) = 0</tex>, что <tex>A(B(t)) = t</tex> и <tex>B(C(u)) = u</tex>. При этом, функции <tex>A</tex> и <tex>C</tex> единственны. Функция <tex>A</tex> называется левой обратной, а функция <tex>C</tex> {{---}} правой обратной к функции <tex>B</tex>.
|proof=
+
|proof =
 
:Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично. Будем определять кожффициенты функции <tex>A</tex> последовательно. Коэффициент <tex>a_1</tex> определяется из условия <tex>a_1 b_1 = 1</tex>, откуда <tex>a_1 = \dfrac{1}{b_1}</tex>.  
 
:Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично. Будем определять кожффициенты функции <tex>A</tex> последовательно. Коэффициент <tex>a_1</tex> определяется из условия <tex>a_1 b_1 = 1</tex>, откуда <tex>a_1 = \dfrac{1}{b_1}</tex>.  
 
:Предположим теперь, что коэффициенты <tex>a_1, a_2, \dots, a_n</tex> уже определены. Коэффициент <tex>a_{n+1}</tex> определяется из условия <tex>a_{n+1} b_1^{n+1} + \dots = 0</tex>, где точками обозначен неокторый многочлен от <tex>a_1, \dots, a_n</tex> и <tex>b_1, \dots, b_n</tex>. Тем самым, условие представляет собой линейное уравнение на <tex>a_{n+1}</tex>, причем коэффициент <tex>b_1^{n+1}</tex> при <tex>a_{n+1}</tex> отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
 
:Предположим теперь, что коэффициенты <tex>a_1, a_2, \dots, a_n</tex> уже определены. Коэффициент <tex>a_{n+1}</tex> определяется из условия <tex>a_{n+1} b_1^{n+1} + \dots = 0</tex>, где точками обозначен неокторый многочлен от <tex>a_1, \dots, a_n</tex> и <tex>b_1, \dots, b_n</tex>. Тем самым, условие представляет собой линейное уравнение на <tex>a_{n+1}</tex>, причем коэффициент <tex>b_1^{n+1}</tex> при <tex>a_{n+1}</tex> отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
 +
}}
 +
 +
 +
{{Лемма
 +
|about = деление формальных степенных рядов
 +
|statement = Пусть <tex>A(s) = a_0 + a_1 s + a_2 s^2 + a_3 s^3 + \dots </tex> {{---}} формальный степенной ряд, причем <tex>A(0) \ne 0</tex>. Тогда существует единственный формальный степенной ряд <tex>B(s) = b_0 + b_1 s + b_2 s^2 + b_3 s^3 + \dots </tex>, такой что <tex>A(s)B(s) = 1</tex>.
 +
|proof =
 +
:Снова проведем доказательство по индукции. <tex>b_0 = \dfrac{1}{a_0}</tex>. Пусть теперь все коэффициенты ряда <tex>B</tex> вплоть до степени <tex>n - 1</tex> однозначно определены. Коэффициент при <tex>s^n</tex> определяется из условия <tex>a_0 b_n + a_1 b_{n - 1} + \dots + a_n b_0 = 0</tex>. Это линейное уравнение на <tex>b_n</tex>, причем коэффициент <tex>a_0</tex> при <tex>b_n</tex> отличен от нуля. Поэтому уравнение имеет единсвтенное решение.
 
}}
 
}}

Версия 21:57, 22 мая 2017

Суммой двух производящих функций [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math] называется производящая функция [math]A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b2) s^2 + \dots[/math].

Произведением производящих функций [math]A[/math] и [math]B[/math] называется производящая функция [math]A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots[/math].

Операции сложения и умножения производящих функций коммутативны и ассоциативны.


Пусть [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math] — две производящие функции, причем [math]B(0) = b_0 = 0[/math]. Подстановкой производящей функции [math]B[/math] в производящую функцию [math]A[/math] называется производящая функция [math]A(B(t)) = a_0 + a_1 b_1 t + (a_1 b_2 + a_2 b_1^2) t^2 + (a_1 b_3 + 2 a_2 b_1 b_2 + a_3 b_1^3) t^3 + \dots[/math].

Если, например, [math]B(t) = -t[/math], то [math]A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots[/math].

Операция подстановки функции, отличной от нуля в нуле, не определена. (При попытке подставить такую функцию возникает необходимость суммирования бесконечных числовых рядов).


Теорема (об обратной функции):
Пусть функция [math]B(t) = b_1 t + b_2 t^2 + b_3 t^3 + \dots[/math] такова, что [math]B(0) = b_0 = 0[/math], а [math]b_1 \ne 0[/math]. Тогда существуют такие функции [math] A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots[/math], [math]A(0) = 0[/math] и [math]C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots[/math], [math]C(0) = 0[/math], что [math]A(B(t)) = t[/math] и [math]B(C(u)) = u[/math]. При этом, функции [math]A[/math] и [math]C[/math] единственны. Функция [math]A[/math] называется левой обратной, а функция [math]C[/math] — правой обратной к функции [math]B[/math].
Доказательство:
[math]\triangleright[/math]
Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично. Будем определять кожффициенты функции [math]A[/math] последовательно. Коэффициент [math]a_1[/math] определяется из условия [math]a_1 b_1 = 1[/math], откуда [math]a_1 = \dfrac{1}{b_1}[/math].
Предположим теперь, что коэффициенты [math]a_1, a_2, \dots, a_n[/math] уже определены. Коэффициент [math]a_{n+1}[/math] определяется из условия [math]a_{n+1} b_1^{n+1} + \dots = 0[/math], где точками обозначен неокторый многочлен от [math]a_1, \dots, a_n[/math] и [math]b_1, \dots, b_n[/math]. Тем самым, условие представляет собой линейное уравнение на [math]a_{n+1}[/math], причем коэффициент [math]b_1^{n+1}[/math] при [math]a_{n+1}[/math] отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
[math]\triangleleft[/math]


Лемма (деление формальных степенных рядов):
Пусть [math]A(s) = a_0 + a_1 s + a_2 s^2 + a_3 s^3 + \dots [/math] — формальный степенной ряд, причем [math]A(0) \ne 0[/math]. Тогда существует единственный формальный степенной ряд [math]B(s) = b_0 + b_1 s + b_2 s^2 + b_3 s^3 + \dots [/math], такой что [math]A(s)B(s) = 1[/math].
Доказательство:
[math]\triangleright[/math]
Снова проведем доказательство по индукции. [math]b_0 = \dfrac{1}{a_0}[/math]. Пусть теперь все коэффициенты ряда [math]B[/math] вплоть до степени [math]n - 1[/math] однозначно определены. Коэффициент при [math]s^n[/math] определяется из условия [math]a_0 b_n + a_1 b_{n - 1} + \dots + a_n b_0 = 0[/math]. Это линейное уравнение на [math]b_n[/math], причем коэффициент [math]a_0[/math] при [math]b_n[/math] отличен от нуля. Поэтому уравнение имеет единсвтенное решение.
[math]\triangleleft[/math]