Схема Бернулли — различия между версиями
(→Пример) |
|||
Строка 129: | Строка 129: | ||
== Примеры == | == Примеры == | ||
+ | ==== Пример 1 ==== | ||
+ | Правильная монета подбрасывается <tex>10</tex> раз. Найти вероятность того, что герб выпадет от <tex>4</tex> до <tex>6</tex> раз. | ||
+ | |||
+ | Вычислим отдельно вероятности получить <tex>4, 5</tex> и <tex>6</tex> гербов после десяти подбрасываний монеты. | ||
+ | |||
+ | <tex >P(v_{10} = 4) =</tex> <tex> \dbinom{10}{4}\cdot \left(\dfrac{1}{2}\right)^ {4} \cdot \left(\dfrac{1}{2}\right)^ {10 - 4} </tex> <tex>~\approx ~ 0{.}205 </tex> | ||
+ | |||
+ | <tex >P(v_{10} = 5) = </tex> <tex>\dbinom{10}{5}\cdot \left(\dfrac{1}{2}\right)^ {5} \cdot \left(\dfrac{1}{2}\right)^ {10 - 5}</tex><tex>~\approx ~ 0{.}246 </tex> | ||
+ | |||
+ | <tex >P(v_{10} = 6) =</tex> <tex> \dbinom{10}{6}\cdot \left(\dfrac{1}{2}\right)^ {6} \cdot \left(\dfrac{1}{2}\right)^ {10 - 6}</tex> <tex>~\approx ~ 0{.}205 </tex> | ||
+ | |||
+ | Сложим вероятности несовместных событий: | ||
+ | <tex>P(4 \leqslant v_{10} \leqslant 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 </tex> | ||
+ | |||
+ | ==== Пример 2 ==== | ||
+ | Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру. | ||
+ | |||
+ | Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По лемме, <tex > P(A_{k}) =</tex> <tex>\dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{k - 1} </tex> | ||
+ | События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: | ||
+ | <tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .</tex> | ||
+ | Вероятности этих объединений равны суммам вероятностей слагаемых: | ||
+ | |||
+ | <tex > P(A) =</tex><tex> \dfrac{1}{6} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{2} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{4} ... = \dfrac{6}{11}.</tex> Теперь аналогичным образом посчитаю вероятность для события <tex>B</tex> | ||
+ | |||
+ | <tex> P(B) =</tex> <tex>\dfrac{1}{6} \cdot\dfrac{5}{6}+ \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{3} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{5} ... = \dfrac{5}{11}. | ||
+ | </tex> | ||
+ | |||
+ | ==== Пример 3 ==== | ||
+ | Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. | ||
+ | Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. | ||
+ | |||
+ | Так как вероятности выпадения тройки и единицы равны по <tex>\dfrac{1}{6}</tex>, а вероятность третьего исхода (выпала любая другая грань) <tex>\dfrac{4}{6}</tex>, то вероятность получить десять троек, три единицы и ещё два других очка равна | ||
+ | |||
+ | <tex > P(10, 3, 2) = </tex> <tex> \dfrac{15!}{10! \cdot 3! \cdot 2!}\cdot \left(\dfrac{1}{6}\right)^{10} \cdot \left(\dfrac{1}{6}\right)^{3}\cdot\left(\dfrac{4}{6}\right)^{2} | ||
+ | </tex> | ||
+ | |||
==См. также== | ==См. также== |
Версия 19:11, 1 июня 2017
Распределение Бернулли — описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех", например, при бросании монеты, или при моделировании удачной или неудачной хирургической операции.
Содержание
Биномиальное распределение
Говорят, что случайная величина
имеет биномиальное распределение с параметрами и и пишут: если принимает значения с вероятностями . Случайная величина с таким распределением имеет смысл числа успехов в испытаниях схемы Бернулли с вероятностью успеха . Таблица распределения имеет вид0 | 1 | ... | ... | |||
... | ... |
Определение
Определение: |
Схемой Бернулли (англ. Bernoulli scheme) называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью | , а неудача — с вероятностью .
Случайная величина с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью успеха : ни одного успеха или один успех. Функция распределения имеет вид
Обозначим через
число успехов, случившихся в испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от до в зависимости от результатов испытаний. Например, если все испытаний завершились неудачей, то величина равна нулю.Теорема: |
Для любого вероятность получить в испытаниях успехов равна |
Доказательство: |
Событие Набор вероятностей в теореме называется биномиальным распределением вероятностей. означает, что в испытаниях схемы Бернулли произошло ровно успехов. Рассмотрим один элементарный исход из события : когда первые испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна Другие элементарные исходы из события отличаются лишь расположением успехов на местах. Есть ровно cпособов расположить успехов на местах. Поэтому событие состоит из элементарных исходов, вероятность каждого из которых равна |
Пример
Правильная монета подбрасывается
раз. Найти вероятность того, что герб выпадет от до раз.Вычислим отдельно вероятности получить
и гербов после десяти подбрасываний монеты.
Сложим вероятности несовместных событий:
Лемма
Лемма: |
Вероятность того, что первый успех произойдёт в испытании с номером равна |
Доказательство: |
Вероятность первым | испытаниям завершиться неудачей, а последнему — успехом, равна
Теорема: |
Пусть для любого . Тогда для любых неотрицательных целых и имеет место равенство: |
Доказательство: |
По определению условной вероятности, Последнее равенство верно в силу того, что событие влечёт событие , поэтому их пересечением будет событие . Найдём для целого вероятность : событие означает,что в схеме Бернулли первые испытаний завершились «неудачами», то есть его вероятность равна . Возвращаясь к формуле , эта случайная величина равна . |
Пример
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие
состоит в том, что шесть очков впервые выпадет в испытании с номером . По лемме, События , означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: Вероятности этих объединений равны суммам вероятностей слагаемых:Теперь аналогичным образом посчитаю вероятность для события
Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.
Пример
Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Поэтому воспользоваться формулой для числа успехов в схеме Бернулли не удаcтся. Попробуем вывести подходящую формулу. Пусть в одном испытании возможны
исходов: и -й исход в одном испытании случается с вероятностью , где .Теорема: |
Обозначим через вероятность того, что в независимых испытаниях первый исход случится раз, второй исход — раз, и так далее, наконец, -й исход — раз тогда верна формула:
|
Доказательство: |
Рассмотрим один элементарный исход, благоприятствующий выпадению единиц, двоек, и так далее. Это результат экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей . Остальные благоприятные исходы отличаются лишь расположением чисел на местах. Число таких исходов равно числу способов расположить на местах единиц, двоек,и так далее Это число равно |
Теперь мы можем вернуться к последнему примеру и выписать ответ: так как вероятности выпадения тройки и единицы равны по
, а вероятность третьего исхода (выпала любая другая грань) , то вероятность получить десять троек, три единицы и ещё два других очка равна
Примеры
Пример 1
Правильная монета подбрасывается
раз. Найти вероятность того, что герб выпадет от до раз.Вычислим отдельно вероятности получить
и гербов после десяти подбрасываний монеты.
Сложим вероятности несовместных событий:
Пример 2
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие
состоит в том, что шесть очков впервые выпадет в испытании с номером . По лемме, События , означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: Вероятности этих объединений равны суммам вероятностей слагаемых:Теперь аналогичным образом посчитаю вероятность для события
Пример 3
Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани.
Так как вероятности выпадения тройки и единицы равны по
, а вероятность третьего исхода (выпала любая другая грань) , то вероятность получить десять троек, три единицы и ещё два других очка равна
См. также
Источники информации
- Н.И Чернова Теория вероятности — Новосибирск, 2009.