Алгоритм Краскала — различия между версиями
(→Идея) |
|||
Строка 3: | Строка 3: | ||
==Идея== | ==Идея== | ||
Будем последовательно строить подграф <tex>F</tex> графа <tex>G</tex> ("растущий лес"), поддерживая следующий инвариант: на каждом шаге <tex>F</tex> можно достроить до некоторого MST. Начнем с того, что включим в <tex>F</tex> все вершины графа <tex>G</tex>. Теперь будем обходить множество <tex>EG</tex> в порядке увеличения веса ребер. Добавление очередного ребра <tex>e</tex> в <tex>F</tex> может привести к возникновению цикла в одной из компонент связности <tex>F</tex>. В этом случае, очевидно, <tex>e</tex> не может быть включено в <tex>F</tex>. В противном случае <tex>e</tex> соединяет разные компоненты связности <tex>F</tex> и из [[Лемма о безопасном ребре|леммы о безопасном ребре]] следует, что <tex>F+e</tex> можно продолжить до MST, поэтому добавим это ребро в <tex>F</tex>.<br> | Будем последовательно строить подграф <tex>F</tex> графа <tex>G</tex> ("растущий лес"), поддерживая следующий инвариант: на каждом шаге <tex>F</tex> можно достроить до некоторого MST. Начнем с того, что включим в <tex>F</tex> все вершины графа <tex>G</tex>. Теперь будем обходить множество <tex>EG</tex> в порядке увеличения веса ребер. Добавление очередного ребра <tex>e</tex> в <tex>F</tex> может привести к возникновению цикла в одной из компонент связности <tex>F</tex>. В этом случае, очевидно, <tex>e</tex> не может быть включено в <tex>F</tex>. В противном случае <tex>e</tex> соединяет разные компоненты связности <tex>F</tex> и из [[Лемма о безопасном ребре|леммы о безопасном ребре]] следует, что <tex>F+e</tex> можно продолжить до MST, поэтому добавим это ребро в <tex>F</tex>.<br> | ||
− | Из | + | Из леммы о безопасном ребре следует, что <tex>F</tex> - MST. |
==Реализация== | ==Реализация== | ||
Строка 11: | Строка 11: | ||
1) Отсортируем <tex>E</tex> по весу ребер.<br> | 1) Отсортируем <tex>E</tex> по весу ребер.<br> | ||
2) Заведем систему непересекающихся множеств (DSU) и инициализируем ее множеством <tex>V</tex>.<br> | 2) Заведем систему непересекающихся множеств (DSU) и инициализируем ее множеством <tex>V</tex>.<br> | ||
− | 3) Перебирая ребра <tex>uv \in EG</tex> в порядке увеличения веса, смотрим, одинакового ли представителя для <tex>u</tex> и <tex>v</tex> возвращает DSU. Если нет, то делаем слияние | + | 3) Перебирая ребра <tex>uv \in EG</tex> в порядке увеличения веса, смотрим, одинакового ли представителя для <tex>u</tex> и <tex>v</tex> возвращает DSU. Если нет, то делаем слияние множеств в DSU и полагаем <tex>F := F + uv</tex>.<br> |
==Асимптотика== | ==Асимптотика== |
Версия 17:40, 22 декабря 2010
Алгоритм Краскала - алгоритм поиска минимального остовного дерева (minimum spanning tree, MST) во взвешенном неориентированном связном графе.
Содержание
Идея
Будем последовательно строить подграф леммы о безопасном ребре следует, что можно продолжить до MST, поэтому добавим это ребро в .
Из леммы о безопасном ребре следует, что - MST.
Реализация
Вход: граф
Выход: минимальный остов графа
1)
1) Отсортируем по весу ребер.
2) Заведем систему непересекающихся множеств (DSU) и инициализируем ее множеством .
3) Перебирая ребра в порядке увеличения веса, смотрим, одинакового ли представителя для и возвращает DSU. Если нет, то делаем слияние множеств в DSU и полагаем .
Асимптотика
Сортировка
Работа с DSU займет , где - обратная функция Аккермана, которая не превосходит 4 во всех практических приложениях и которую можно принять за константу.
Алгоритм работает за .