Панциклический граф — различия между версиями
(добавлено забытое) |
|||
| Строка 51: | Строка 51: | ||
#<tex> G </tex> {{---}} панциклический граф | #<tex> G </tex> {{---}} панциклический граф | ||
#<tex> G </tex> = <tex>K_{n / 2, n / 2}</tex> | #<tex> G </tex> = <tex>K_{n / 2, n / 2}</tex> | ||
| − | |proof=По [ | + | |proof=По [[Теорема Оре|теореме Оре]] <tex> G </tex> - гамильтонов граф. Покажем, что <tex> m \geqslant n^2/4 </tex>. Пусть <tex> k </tex> - минимальная степень вершины в графе. |
# <tex> k \geqslant n/2 </tex>, тогда <tex> 2m = \sum\limits_{i=1}^n deg(v_i) >= \sum\limits_{i=1}^n k = k * n \geqslant n^2/2 </tex> | # <tex> k \geqslant n/2 </tex>, тогда <tex> 2m = \sum\limits_{i=1}^n deg(v_i) >= \sum\limits_{i=1}^n k = k * n \geqslant n^2/2 </tex> | ||
# <tex> k < n/2 </tex>. Пусть существует x вершин, так что их степени равны <tex> k </tex>, тогда они все должна быть связаны, так как иначе мы получим противоречие с утверждением теоремы <tex> \forall (u, v) \notin E : deg(u) + deg(v) \geqslant n </tex>. Понятно, что <tex> x \leqslant k + 1 </tex>, но так как граф является гамильтоновым, то он связен, а значит <tex> x < k + 1 </tex>. А также есть как минимум <tex> n - k - 1 </tex> стпени которых как минимум <tex> n - k </tex>. Тогда можно оценить количество ребер. <br> <tex> m \geqslant \genfrac{}{}{}{}{1}{2}((n-k-1)(n-k)+k^2+k+1) = \genfrac{}{}{}{}{1}{2}(n^2 - n(2k + 1) + 2k^2 + 2k + 1) \geqslant \genfrac{}{}{}{}{n^2+1}{4} </tex> | # <tex> k < n/2 </tex>. Пусть существует x вершин, так что их степени равны <tex> k </tex>, тогда они все должна быть связаны, так как иначе мы получим противоречие с утверждением теоремы <tex> \forall (u, v) \notin E : deg(u) + deg(v) \geqslant n </tex>. Понятно, что <tex> x \leqslant k + 1 </tex>, но так как граф является гамильтоновым, то он связен, а значит <tex> x < k + 1 </tex>. А также есть как минимум <tex> n - k - 1 </tex> стпени которых как минимум <tex> n - k </tex>. Тогда можно оценить количество ребер. <br> <tex> m \geqslant \genfrac{}{}{}{}{1}{2}((n-k-1)(n-k)+k^2+k+1) = \genfrac{}{}{}{}{1}{2}(n^2 - n(2k + 1) + 2k^2 + 2k + 1) \geqslant \genfrac{}{}{}{}{n^2+1}{4} </tex> | ||
Версия 19:37, 5 декабря 2017
| Определение: |
| Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от до . Если граф содержит все циклы от до , то такой граф называют -панциклическим. |
Предпосылки к теореме. Теорема Мантела(частный случай теоремы Турана) утверждает, что для любой граф на вершинах, у которого количество ребер не меньше , либо содержит треуголник либо является .
| Теорема (J. A. Bondy): |
— гамильтонов граф, .
Тогда верно одно из двух утверждений:
|
| Доказательство: |
|
Обозначим как гамильтонов цикл в графе . Для простоты расположим на окружности. Пусть в графе нет цикла длины , (по условию в графе существует гамильтонов цикл, длина которого равна ). Рассмотрим две соседние вершины и вместе с ними рассмотрим следующие пары: Для таких, что рассмотрим пары () и () Для таких, что рассмотрим пары () и () При добавлении таких пар ребер в графе появляется цикл длины , а значить в может входить максимум одно ребро из таких пар. Тогда можно утверждать, что . Докажем методом от противного, что — четно. Пусть является нечетным, тогда из рассуждений выше существует вершина , для которое верно, что . Пусть это не так, тогда , значит , то есть мы получили противоречие с тем, что . Без потери общности пусть Рассмотрим , то есть , но по условию - получили противоречие. Таким образом является четным. Тогда верно, что , а так как по условию , то . Данное равенство достигается, если верно, что:
Пусть не , тогда существует такое четное число , что в графе существует ребро . Докажем, что в таком случае существует ребро . Пусть это не так и минимальное четное , что больше двух, т.е. . Тогда существует три случая:
|
| Утверждение: |
Тогда верно одно из двух утверждений:
|
|
По теореме Оре - гамильтонов граф. Покажем, что . Пусть - минимальная степень вершины в графе.
|