Теорема Турана об экстремальном графе — различия между версиями
(Новая страница: «==Теорема Турана== '''Теорема Ту́рана''' дает сверху на количество ребер в графе, в котором н...») |
(→Теорема Турана) |
||
Строка 1: | Строка 1: | ||
− | + | '''Теорема Ту́рана''' {{---}} классическая теорема экстремальной теории графов. Она послужила образцом для большого количества подобных теорем, которые изучают некоторые глобальные параметры, такие как [[Раскраска графа| хроматическое число]], относительно присутствия тех или иных подструктур. | |
− | '''Теорема Ту́рана''' | ||
Впервые задачу сформулировал Пал Туран в 1941 году. | Впервые задачу сформулировал Пал Туран в 1941 году. | ||
+ | |||
==См. также== | ==См. также== | ||
==Источники информации== | ==Источники информации== | ||
* Книга по дискре | * Книга по дискре |
Версия 22:09, 25 декабря 2017
Теорема Ту́рана — классическая теорема экстремальной теории графов. Она послужила образцом для большого количества подобных теорем, которые изучают некоторые глобальные параметры, такие как хроматическое число, относительно присутствия тех или иных подструктур.
Впервые задачу сформулировал Пал Туран в 1941 году.
См. также
Источники информации
- Книга по дискре