Отношение эквивалентности — различия между версиями
Shersh (обсуждение | вклад) м (→Примеры отношений эквивалентности) |
|||
Строка 54: | Строка 54: | ||
* Отношение ''принадлежать к одному виду'' на множестве животных | * Отношение ''принадлежать к одному виду'' на множестве животных | ||
* Отношение ''жить в одном городе'' на множестве людей | * Отношение ''жить в одном городе'' на множестве людей | ||
+ | |||
+ | == См. также == | ||
+ | * [[Определение_отношения|Определение отношения]] | ||
+ | * [[Рефлексивное_отношение|Рефлексивное отношение]] | ||
+ | * [[Симметричное_отношение|Симметричное отношение]] | ||
+ | * [[Транзитивное_отношение|Транзитивное отношение]] | ||
+ | * [[Отношение_порядка|Отношение порядка]] | ||
== Источники информации == | == Источники информации == |
Версия 16:25, 27 декабря 2017
Определение: |
Бинарное отношение на множестве называется отношением эквивалентности (англ. equivalence binary relation), если оно обладает следующими свойствами:
|
Отношение эквивалентности обозначают символом
. Запись вида читают как " эквивалентно "Содержание
Примеры отношений эквивалентности
- Отношение равенства( ) является тривиальным примером отношения эквивалентности на любом множестве.
- Отношение равенства по модулю : на множестве целых чисел.
- Отношение параллельности прямых на плоскости.
- Отношение подобия фигур на плоскости.
- Отношение равносильности на множестве уравнений.
- Отношение связности вершин в графе.
- Отношение быть одного роста на множестве людей.
Следующие отношения не являются отношениями эквивалентности:
- Отношения порядка, так как они не являются симметричными.
- Отношение быть знакомым на множестве людей, так как оно не транзитивное.
Классы эквивалентности
Определение: |
Система непустых подмножеств
| множества называется разбиением (англ. partition) данного множества, если:
Примерами разбиений являются:
- Разбиение многоугольников на группы по числу вершин.
- Разбиение треугольников по свойствам углов (остроугольные, прямоугольные, тупоугольные).
- Разбиение учащихся школы по классам.
Теорема: |
Если на множестве M задано отношение эквивалентности , то оно порождает разбиение этого множества на классы эквивалентности такое, что:
|
Семейство всех классов эквивалентности множества образует множество, называемое фактор-множеством, или факторизацией множества
по отношению , и обозначаемое .Примеры
- Равенство - классический пример отношения эквивалентности на любом множестве, в т. ч. вещественных чисел
- Равенство по модулю:
- В Евклидовой геометрии:
- отношение подобия
- отношение параллельности
- отношение конгруэнтности
- Разбиение многоугольников по количеству вершин
- Оношение равносильности на множестве уравнений
- Отношение равномощности множеств
- Отношение принадлежать к одному виду на множестве животных
- Отношение жить в одном городе на множестве людей
См. также
- Определение отношения
- Рефлексивное отношение
- Симметричное отношение
- Транзитивное отношение
- Отношение порядка