Конструирование комбинаторных объектов и их подсчёт — различия между версиями
Mervap (обсуждение | вклад) м (ans one more...) |
Mervap (обсуждение | вклад) (New image + fix) |
||
Строка 3: | Строка 3: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса <tex dpi="130"> | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса от <tex dpi="130">1</tex> до <tex dpi="130">m</tex>. Мы считаем что нет объектов веса <tex dpi="130"">0</tex>, так как в противном случае существует бесконечное количество последовательностей любого веса. Тогда, '''количество последовательностей''' веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}</tex>. Причем <tex dpi="150"">S_{0} = 1</tex>, так как есть единственный способ составить пустую последовательность. |
+ | |proof=Докажем по индукции. | ||
+ | |||
+ | '''База <tex dpi="130"">n = 1</tex>'''. | ||
+ | :<tex dpi="130"">S_{1}=w_{1} S_{0}=w_{1}</tex>, что верно так как единственный способ составить последовательность веса <tex dpi="130"">1</tex> это взять любой элемент веса <tex dpi="130"">1</tex>. | ||
+ | |||
+ | '''Переход'''. | ||
+ | :Пусть для <tex dpi="130"">j < n</tex> верно. Докажем для <tex dpi="130"">n</tex>. Возьмем произвольный элемент из <tex dpi="130"">A</tex> веса <tex dpi="130"">i \leqslant n</tex>, и допишем его к последовательности элементов веса <tex dpi="130"">n-i</tex>. Образуется новая последовательность веса <tex dpi="130"">n</tex>. Причем никакая последовательность не будет учтена дважды, так как предже не было последовательнотей веса <tex dpi="130"">n</tex> и ни к какой последовательности меньшего веса мы не добавляем один и тот де элемент дважды. | ||
}} | }} | ||
Строка 21: | Строка 28: | ||
:<tex dpi="150">S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]. | :<tex dpi="150">S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]. | ||
+ | [[File:Sequence_of_rooted_Trees.png|750px]] | ||
[[File:Ordered_Rooted_Trees.png|700px]] | [[File:Ordered_Rooted_Trees.png|700px]] | ||
Строка 27: | Строка 35: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130"> | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">P=PSet(A)</tex> {{---}} множество всех множеств составленных из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество множеств''' суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}}{i} p_{n-ik, k-1}</tex> {{---}} количество таких множеств, что они содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>. |
}} | }} | ||
===Количество PSet из элементов 0 и 1=== | ===Количество PSet из элементов 0 и 1=== | ||
− | Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex> | + | Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex>P=PSet(A)</tex> {{---}} множество всех множеств из <tex dpi="130">A</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда <tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} p_{n-ik, k-1}</tex>. |
− | :<tex dpi="150"> | + | :<tex dpi="150">P_{0}=p_{0, 0} = 1</tex>. |
− | :<tex dpi="150"> | + | :<tex dpi="150">P_{1}=p_{1, 1} = p_{1, 0} + 2p_{0, 0} = 2p_{0, 0} = 2</tex>. |
− | :<tex dpi="150"> | + | :<tex dpi="150">P_{2}=p_{2, 2} = p_{2, 1} + 0 \cdot p_{0, 1} = p_{2, 0} + 2p_{1, 0} + p_{0, 0}= p_{0, 0} = 1</tex>. |
− | :<tex dpi="150">{ | + | :<tex dpi="150">{P_{3}=p_{3, 3} = p_{3, 2} + 0 \cdot p_{0, 2} = p_{3, 1} + 0 \cdot p_{0, 1} = p_{3, 0} + 2p_{2, 0} + 0 \cdot p_{1, 0} + 0 \cdot p_{0, 0}= 0}</tex>. |
− | :Для <tex dpi="150">n > 2</tex>, <tex dpi="150"> | + | :Для <tex dpi="150">n > 2</tex>, <tex dpi="150">P_{n} = 0</tex> . |
:<tex dpi="150">\{\}</tex> | :<tex dpi="150">\{\}</tex> | ||
Строка 45: | Строка 53: | ||
===Количество разбиений на слагаемые=== | ===Количество разбиений на слагаемые=== | ||
− | Пусть <tex dpi="130">A=\mathbb{N}</tex>, <tex dpi="130"> | + | Пусть <tex dpi="130">A=\mathbb{N}</tex>, <tex dpi="130">P=PSet(A)</tex> {{---}} множество всех [[Нахождение количества разбиений числа на слагаемые|разбиений на слагаемые]], <tex dpi="130">W=\{1 \ldots 1\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда, |
− | :<tex dpi="150"> | + | :<tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} p_{n-ik, k-1} = p_{n, k-1} + p_{n - k, k}</tex>, что, как не сложно заметить, соответствует формуле, полученной методом [[Нахождение количества разбиений числа на слагаемые#Алгоритм за O(N^2)|динамического программирования]]. |
Строка 52: | Строка 60: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130"> | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">M=MSet(A)</tex> {{---}} множество всех мультимножеств <ref>[[wikipedia:Multiset|Wikipedia {{---}} Мультимножества]]</ref> из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">m_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} m_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, что они содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>. |
}} | }} | ||
===Количество MSet из элементов 0 и 1=== | ===Количество MSet из элементов 0 и 1=== | ||
Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex dpi="130">S=PSet(A)</tex> {{---}} множество всех множеств из <tex dpi="130">A</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex>, <tex dpi="130">w_{0} = 1</tex>. | Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex dpi="130">S=PSet(A)</tex> {{---}} множество всех множеств из <tex dpi="130">A</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex>, <tex dpi="130">w_{0} = 1</tex>. | ||
− | :Тогда, <tex dpi="150"> | + | :Тогда, <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1}</tex> |
− | :<tex dpi="150"> | + | :<tex dpi="150">M_{0}=m_{0, 0} = 1</tex>. |
− | :<tex dpi="150"> | + | :<tex dpi="150">M_{1}=m_{1, 1} = m_{1, 0} + 2m_{0, 0} = 2m_{0, 0} = 2</tex>. |
− | :<tex dpi="150"> | + | :<tex dpi="150">M_{2}=m_{2, 2} = m_{2, 1} + 0 \cdot m_{0, 1} = m_{2, 0} + 2m_{1, 0} + 3m_{0, 0}= 3m_{0, 0} = 3</tex>. |
− | :<tex dpi="150"> | + | :<tex dpi="150">M_{3}=m_{3, 3} = m_{3, 2} + 0 \cdot m_{0, 2} = m_{3, 1} + 0 \cdot m_{0, 1} = m_{3, 0} + 2m_{2, 0} + 3m_{1, 0} + 4m_{0, 0}= 4m_{0, 0} = 4</tex>. |
:<tex dpi="150">\{\}</tex> | :<tex dpi="150">\{\}</tex> | ||
Строка 68: | Строка 76: | ||
:<tex dpi="150">\{0, 0, 0\}, \{0, 0, 1\}, \{0, 1, 1\}, \{1, 1, 1\}</tex> | :<tex dpi="150">\{0, 0, 0\}, \{0, 0, 1\}, \{0, 1, 1\}, \{1, 1, 1\}</tex> | ||
− | :<tex dpi="150">{ | + | :<tex dpi="150">{M_{n}=m_{n, n} = m_{n, n-1} + 0 \cdot m_{0, n-1} = m_{n, n-2} + 0 \cdot m_{0, n-2} = \ldots = m_{n, 0} + 2m_{n - 1, 0} + \ldots + nm_{1, 0} + (n+1) m_{0,0} = (n + 1) m_{0,0} = n+1}</tex>. |
===Подсчет подвешенных непомеченных деревьев без порядка на детях=== | ===Подсчет подвешенных непомеченных деревьев без порядка на детях=== | ||
Строка 77: | Строка 85: | ||
Количество таких деревьев с <tex dpi="130">n</tex> вершинами образуют последовательность <tex dpi="130"> 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847 \ldots</tex> <ref>[http://oeis.org/A000081| Number of unlabeled rooted trees with n node]</ref> | Количество таких деревьев с <tex dpi="130">n</tex> вершинами образуют последовательность <tex dpi="130"> 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847 \ldots</tex> <ref>[http://oeis.org/A000081| Number of unlabeled rooted trees with n node]</ref> | ||
+ | |||
+ | [[File:Forests.png|670px]] | ||
[[File:Rooted_Trees.png|700px]] | [[File:Rooted_Trees.png|700px]] | ||
+ | |||
==Пары (Pair)== | ==Пары (Pair)== | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex>, <tex dpi="130">B=\{b_{1},b_{2}, \ldots ,b_{m}\}</tex> {{---}} множества из различных объектов, <tex dpi="130"> | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex>, <tex dpi="130">B=\{b_{1},b_{2}, \ldots ,b_{m}\}</tex> {{---}} множества из различных объектов, <tex dpi="130">D=Pair(A, B)</tex> {{---}} множество всех пар объектов, составленных из элементов <tex dpi="130">A</tex> и <tex dpi="130">B</tex>. <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>, составленных из элементов <tex dpi="130">A</tex>, а <tex dpi="130">U=\{u_{1},u_{2}, \ldots ,u_{k}\}</tex> {{---}} соответственно для <tex dpi="130">B</tex>. Тогда '''количество пар''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">D_{n}=\sum_{i=0}^{n}w_{i}u_{n-i}</tex>. |
}} | }} | ||
===Количество подвешенных неполных двоичных деревьев=== | ===Количество подвешенных неполных двоичных деревьев=== | ||
− | Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130"> | + | Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">D=Pair(T, T)</tex> {{---}} множество всех пар из данных деревьев. Чтобы получить двоичное дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней левого и правого сына с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда: |
− | :<tex dpi="150">T_{n}= | + | :<tex dpi="150">T_{n}=D_{n-1}=\sum_{i=0}^{n-1}T_{i}T_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]. |
==Циклы (Cycle)== | ==Циклы (Cycle)== | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">C=Cycle(A)</tex> {{---}} множество всех циклов из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots m\}</tex>. | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">C=Cycle(A)</tex> {{---}} множество всех циклов <ref>[[wikipedia:Periodic sequence|Wikipedia {{---}} Циклы]]</ref> из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots m\}</tex>. |
Тогда '''количество циклов''' веса <tex dpi="150">n</tex> можно вычислить как <tex dpi="150">C_{n}=\sum_{s=1}^{n}c_{n, s}</tex>, где <tex dpi="150">c_{n,s}</tex> {{---}} количество циклов веса <tex dpi="150">n</tex> длины <tex dpi="150">s</tex>. | Тогда '''количество циклов''' веса <tex dpi="150">n</tex> можно вычислить как <tex dpi="150">C_{n}=\sum_{s=1}^{n}c_{n, s}</tex>, где <tex dpi="150">c_{n,s}</tex> {{---}} количество циклов веса <tex dpi="150">n</tex> длины <tex dpi="150">s</tex>. |
Версия 05:05, 28 декабря 2017
Содержание
Последовательности (Seq)
Утверждение: |
Пусть — множество из различных объектов, — множество всех последовательностей из элементов , — количество объектов веса от до . Мы считаем что нет объектов веса , так как в противном случае существует бесконечное количество последовательностей любого веса. Тогда, количество последовательностей веса можно вычислить как . Причем , так как есть единственный способ составить пустую последовательность. |
Докажем по индукции. База .
Переход.
|
Подсчет битовых векторов длины
Пусть битовых векторов, .
, — множество всехТогда,
.Подсчет Seq из маленьких и больших элементов
Пусть
, , — множество всех последовательностей из маленьких и больших элементов, , .Тогда, [1].
, где — -ое число ФибоначчиПодсчет подвешенных непомеченных деревьев с порядком на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:- .
- число Каталана. , где — -ое
Множества (PSet)
Утверждение: |
Пусть — множество из различных объектов, — множество всех множеств составленных из элементов , — количество объектов веса . Тогда количество множеств суммарного веса можно вычислить как , где — количество таких множеств, что они содержат объекты, вес которых не больше чем . |
Количество PSet из элементов 0 и 1
Пусть
, — множество всех множеств из , , . Тогда , где .- .
- .
- .
- .
- Для , .
Количество разбиений на слагаемые
Пусть разбиений на слагаемые, , . Тогда,
, — множество всех- динамического программирования. , где , что, как не сложно заметить, соответствует формуле, полученной методом
Мультимножества (MSet)
Утверждение: |
Пусть [2] из элементов , — количество объектов веса . Тогда количество мультимножеств из объектов суммарного веса можно вычислить как , где — количество таких мультимножеств, что они содержат объекты, вес которых не больше чем . — множество из различных объектов, — множество всех мультимножеств |
Количество MSet из элементов 0 и 1
Пусть
, — множество всех множеств из , , .- Тогда, , где
- .
- .
- .
- .
- .
Подсчет подвешенных непомеченных деревьев без порядка на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:- .
- .
- .
Количество таких деревьев с [3]
вершинами образуют последовательность
Пары (Pair)
Утверждение: |
Пусть , — множества из различных объектов, — множество всех пар объектов, составленных из элементов и . — количество объектов веса , составленных из элементов , а — соответственно для . Тогда количество пар из объектов суммарного веса можно вычислить как . |
Количество подвешенных неполных двоичных деревьев
Пусть
— количество таких деревьев с вершинами, . — множество всех пар из данных деревьев. Чтобы получить двоичное дерево из вершин, достаточно взять вершину и подвесить к ней левого и правого сына с суммарным количеством вершин . Тогда:- число Каталана. , где — -ое
Циклы (Cycle)
Утверждение: |
Пусть [4] из элементов , — количество объектов веса .
— множество из различных объектов, — множество всех циклов Тогда количество циклов веса По можно вычислить как , где — количество циклов веса длины . лемме Бёрнсайда , где — количество стабилизаторов для циклического сдвига на . |
Найдем
в общем случае.Пусть наибольший общий делитель. Заметим, что в -ой перестановке на -ой позиции стоит элемент . Также, заметим, что элемент переходит в элемент , где . Из этого следует, что длина цикла для -ой перестановки равна , где — наименьшее общее кратное.
—Также заметим, что если вес
нельзя равномерно распределить по всей длине цикла, то стабилизатор равен .
Где
— число способов упорядочить набор из элементов суммарного веса и, причем .
Задача об ожерельях
Решим данным способом задачу об ожерельях. Пусть необходимый вес это количество бусинок, а — количество цветов. При чем каждая бусинка весит . То есть .
так как невозможно набрать вес менее чем бусинами при весе бусин .
. Поскольку все бусины имеют одинаковый вес , то
В итоге,
.Производящие функции
Для анализа свойств таких больших групп часто применяют метод производящих функций. Рассмотренные классы имеют следующие производящие функции:
См.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке