Конструирование комбинаторных объектов и их подсчёт — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Метод производящих функций)
(somefix)
Строка 14: Строка 14:
  
 
===Подсчет битовых векторов длины <tex dpi="150">n</tex>===
 
===Подсчет битовых векторов длины <tex dpi="150">n</tex>===
Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex> <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех [[Комбинаторные объекты#Битовые вектора|битовых векторов]], <tex dpi="130">S_{0}=1</tex>.
+
Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex> <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех [[Комбинаторные объекты#Битовые вектора|битовых векторов]].
  
 
Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}=2S_{n-1}=2^{n}</tex>.
 
Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}=2S_{n-1}=2^{n}</tex>.
  
 
===Подсчет Seq из маленьких и больших элементов===
 
===Подсчет Seq из маленьких и больших элементов===
Пусть <tex dpi="130">A=\{1, 2\}</tex>, <tex dpi="130">W=\{1, 1, 0 \ldots 0\}</tex>, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из маленьких и больших элементов, <tex dpi="130">S_{0}=1</tex>, <tex dpi="130">S_{1}=1</tex>.  
+
Пусть <tex dpi="130">A=\{1, 2\}</tex>, <tex dpi="130">W=\{1, 1, 0 \ldots 0\}</tex>, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из маленьких и больших элементов, <tex dpi="130">S_{1}=1</tex>.  
  
 
Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-1}=S_{n-1}+S_{n-2}=F_{n}</tex>, где <tex dpi="150">F_{n}</tex> {{---}} <tex>n</tex>-ое число Фибоначчи <ref>[[wikipedia:Fibonacci number|Wikipedia {{---}} Числа Фибоначчи]]</ref>.
 
Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-1}=S_{n-1}+S_{n-2}=F_{n}</tex>, где <tex dpi="150">F_{n}</tex> {{---}} <tex>n</tex>-ое число Фибоначчи <ref>[[wikipedia:Fibonacci number|Wikipedia {{---}} Числа Фибоначчи]]</ref>.
  
 
===Подсчет подвешенных непомеченных деревьев с порядком на детях===
 
===Подсчет подвешенных непомеченных деревьев с порядком на детях===
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из данных деревьев. <tex dpi="130">S_{n}</tex> {{---}} количество последовательностей с суммарным количество вершин <tex dpi="130">n</tex>. Чтобы получить дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
+
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами. <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из данных деревьев. <tex dpi="130">S_{n}</tex> {{---}} количество последовательностей с суммарным количество вершин <tex dpi="130">n</tex>. Чтобы получить дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
 
:<tex dpi="150">T_{n}=S_{n-1}</tex>.
 
:<tex dpi="150">T_{n}=S_{n-1}</tex>.
 
:<tex dpi="150">S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]].
 
:<tex dpi="150">S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]].
Строка 36: Строка 36:
 
|statement=
 
|statement=
 
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">P=PSet(A)</tex> {{---}} множество всех множеств, составленных из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{l}\}</tex> {{---}} количество объектов веса от <tex dpi="130">1</tex> до <tex dpi="130">l</tex>. Мы также считаем, что нет объектов веса <tex dpi="130"">0</tex>. Тогда '''количество множеств''' суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}}{i} p_{n-ik, k-1}</tex> {{---}} количество таких множеств, которые содержат объекты, вес которых не больше чем <tex dpi="150">k</tex>. Причем <tex dpi="150">p_{0, i} = 1</tex>, так как не набирать никакой вес есть один способ, а <tex dpi="150">p_{i, 0} = 0</tex>, <tex dpi="150"">i \ne 0</tex>, так как нельзя набрать положительный вес из ничего.
 
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">P=PSet(A)</tex> {{---}} множество всех множеств, составленных из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{l}\}</tex> {{---}} количество объектов веса от <tex dpi="130">1</tex> до <tex dpi="130">l</tex>. Мы также считаем, что нет объектов веса <tex dpi="130"">0</tex>. Тогда '''количество множеств''' суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}}{i} p_{n-ik, k-1}</tex> {{---}} количество таких множеств, которые содержат объекты, вес которых не больше чем <tex dpi="150">k</tex>. Причем <tex dpi="150">p_{0, i} = 1</tex>, так как не набирать никакой вес есть один способ, а <tex dpi="150">p_{i, 0} = 0</tex>, <tex dpi="150"">i \ne 0</tex>, так как нельзя набрать положительный вес из ничего.
|proof=Изначально у нас есть только пустое множество веса <tex dpi="130">0</tex>. Рассмотрим очередной этап вычисления <tex dpi="130">p_{n,k}</tex>. Для данных <tex dpi="130">n</tex> и <tex dpi="130">k</tex> у нас уже имеется множество, которое необходимо дополнить. Мы можем сделать это  добавляя от <tex dpi="130">0</tex> до <tex dpi="130">\lfloor \frac{n}{k} \rfloor</tex> элементов веса <tex dpi="130">k</tex> (при условии, что столько различных элементов имеется) в данное множество. Следовательно, у нас образуется новые множества, которые будет необходимо дополнить элементами веса меньше <tex dpi="130">k</tex> (чтобы избежать повторений) суммарного веса <tex dpi="130">n-ik</tex>, где <tex dpi="130">i</tex> {{---}} количество элементов веса <tex dpi="130">k</tex> которое мы добавили в данное множество. Довольно легко заметить, что данные операции полностью соответствуют описанной выше формуле.  
+
|proof=Изначально у нас есть только пустое множество веса <tex dpi="130">0</tex>. Рассмотрим очередной этап вычисления <tex dpi="130">p_{n,k}</tex>. Для данных <tex dpi="130">n</tex> и <tex dpi="130">k</tex> у нас уже имеется множество, которое необходимо дополнить. Мы можем сделать это  добавляя от <tex dpi="130">0</tex> до <tex dpi="130">\lfloor \frac{n}{k} \rfloor</tex> элементов веса <tex dpi="130">k</tex> (при условии, что столько различных элементов имеется) в данное множество. Выбрать нужное количество элементов можно с помощью сочетаний. Следовательно, у нас образуется новые множества, которые будет необходимо дополнить элементами веса меньше <tex dpi="130">k</tex> (чтобы избежать повторений) суммарного веса <tex dpi="130">n-ik</tex>, где <tex dpi="130">i</tex> {{---}} количество элементов веса <tex dpi="130">k</tex> которое мы добавили в данное множество. Довольно легко заметить, что данные операции полностью соответствуют описанной выше формуле.  
 
}}
 
}}
  
 
===Количество PSet из элементов 0 и 1===
 
===Количество PSet из элементов 0 и 1===
Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex>P=PSet(A)</tex> {{---}} множество всех множеств из <tex dpi="130">A</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда <tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} p_{n-ik, k-1}</tex>.
+
Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex>P=PSet(A)</tex> {{---}} множество всех множеств из <tex dpi="130">A</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex>. Тогда <tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} p_{n-ik, k-1}</tex>.
  
 
:<tex dpi="150">P_{0}=p_{0, 0} = 1</tex>.
 
:<tex dpi="150">P_{0}=p_{0, 0} = 1</tex>.
:<tex dpi="150">P_{1}=p_{1, 1} = p_{1, 0} + 2p_{0, 0} = 2p_{0, 0} = 2</tex>.
+
:<tex dpi="150">P_{1}=p_{1, 1} = \binom{1}{0}p_{1, 0} + \binom{2}{1}p_{0, 0} = 2p_{0, 0} = 2</tex>.
:<tex dpi="150">P_{2}=p_{2, 2} = p_{2, 1} + 0 \cdot p_{0, 1} = p_{2, 0} + 2p_{1, 0} + p_{0, 0}= p_{0, 0} = 1</tex>.
+
:<tex dpi="150">P_{2}=p_{2, 2} = \binom{0}{0} p_{2, 1} + \binom{0}{1}p_{0, 1} = \binom{2}{0}p_{2, 0} + \binom{2}{1}p_{1, 0} + \binom{2}{2}p_{0, 0}= p_{0, 0} = 1</tex>.
:<tex dpi="150">{P_{3}=p_{3, 3} = p_{3, 2} + 0 \cdot p_{0, 2} = p_{3, 1} + 0 \cdot p_{0, 1} = p_{3, 0} + 2p_{2, 0} + 0 \cdot p_{1, 0} + 0 \cdot p_{0, 0}= 0}</tex>.
+
:<tex dpi="150">{P_{3}=p_{3, 3} = \binom{0}{0}p_{3, 2} + \binom{0}{1} p_{0, 2} = \binom{0}{0}p_{3, 1} + \binom{0}{1} p_{0, 1} = \binom{2}{0}p_{3, 0} + \binom{2}{1}p_{2, 0} + \binom{2}{2} p_{1, 0} + \binom{2}{3} p_{0, 0}= 0}</tex>.
 
:Для <tex dpi="150">n > 2</tex>, <tex dpi="150">P_{n} = 0</tex> .
 
:Для <tex dpi="150">n > 2</tex>, <tex dpi="150">P_{n} = 0</tex> .
  
Строка 61: Строка 61:
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">M=MSet(A)</tex> {{---}} множество всех мультимножеств <ref>[[wikipedia:Multiset|Wikipedia {{---}} Мультимножества]]</ref> из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">m_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} m_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, которые содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>.
+
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">M=MSet(A)</tex> {{---}} множество всех мультимножеств <ref>[[wikipedia:Multiset|Wikipedia {{---}} Мультимножества]]</ref> из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{l}\}</tex> {{---}} количество объектов веса от <tex dpi="130">1</tex> до <tex dpi="130">l</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">m_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} m_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, которые содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>.
 
|proof=Рассуждения аналогичны рассуждениям <tex dpi="130">PSet</tex>, однако теперь мы можем брать один и тот же элемент несколько раз. То есть для подсчета вместо обычных сочетаний нужно использовать сочетания с повторениями.  
 
|proof=Рассуждения аналогичны рассуждениям <tex dpi="130">PSet</tex>, однако теперь мы можем брать один и тот же элемент несколько раз. То есть для подсчета вместо обычных сочетаний нужно использовать сочетания с повторениями.  
 
}}
 
}}
Строка 69: Строка 69:
 
:Тогда, <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1}</tex>
 
:Тогда, <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1}</tex>
 
:<tex dpi="150">M_{0}=m_{0, 0} = 1</tex>.
 
:<tex dpi="150">M_{0}=m_{0, 0} = 1</tex>.
:<tex dpi="150">M_{1}=m_{1, 1} = m_{1, 0} + 2m_{0, 0} = 2m_{0, 0} = 2</tex>.
+
:<tex dpi="150">M_{1}=m_{1, 1} = \binom{1}{0}m_{1, 0} + \binom{2}{1}m_{0, 0} = 2m_{0, 0} = 2</tex>.
:<tex dpi="150">M_{2}=m_{2, 2} = m_{2, 1} + 0 \cdot m_{0, 1} = m_{2, 0} + 2m_{1, 0} + 3m_{0, 0}= 3m_{0, 0} = 3</tex>.
+
:<tex dpi="150">M_{2}=m_{2, 2} = \binom{0}{0}m_{2, 1} + \binom{0}{1} m_{0, 1} = \binom{1}{0}m_{2, 0} + \binom{2}{1}m_{1, 0} + \binom{3}{2}m_{0, 0}= 3m_{0, 0} = 3</tex>.
:<tex dpi="150">M_{3}=m_{3, 3} = m_{3, 2} + 0 \cdot m_{0, 2} = m_{3, 1} + 0 \cdot m_{0, 1} = m_{3, 0} + 2m_{2, 0} + 3m_{1, 0} + 4m_{0, 0}= 4m_{0, 0} = 4</tex>.
+
:<tex dpi="150">{M_{3}=m_{3, 3} = \binom{0}{0}m_{3, 2} + \binom{0}{1} m_{0, 2} = \binom{0}{0}m_{3, 1} + \binom{0}{1} m_{0, 1} = \binom{1}{0}m_{3, 0} + \binom{2}{1}m_{2, 0} + \binom{3}{2}m_{1, 0} + \binom{4}{3}m_{0, 0}= 4m_{0, 0} = 4}</tex>.
  
 
:<tex dpi="150">\{\}</tex>
 
:<tex dpi="150">\{\}</tex>
Строка 78: Строка 78:
 
:<tex dpi="150">\{0, 0, 0\}, \{0, 0, 1\}, \{0, 1, 1\}, \{1, 1, 1\}</tex>
 
:<tex dpi="150">\{0, 0, 0\}, \{0, 0, 1\}, \{0, 1, 1\}, \{1, 1, 1\}</tex>
  
:<tex dpi="150">{M_{n}=m_{n, n} = m_{n, n-1} + 0 \cdot m_{0, n-1} = m_{n, n-2} + 0 \cdot m_{0, n-2} = \ldots = m_{n, 0} + 2m_{n - 1, 0} + \ldots + nm_{1, 0} + (n+1) m_{0,0} = (n + 1) m_{0,0} = n+1}</tex>.
+
:<tex dpi="150">{M_{n}=m_{n, n} = \binom{0}{0}m_{n, n-1} + \binom{0}{1} m_{0, n-1} = \binom{0}{0}m_{n, n-2} + \binom{0}{1} m_{0, n-2} = \ldots = \binom{1}{0}m_{n, 0} + \binom{2}{1}m_{n - 1, 0} + \ldots + \binom{n}{n-1}m_{1, 0} + \binom{n+1}{n} m_{0,0} = (n + 1) m_{0,0} = n+1}</tex>.
  
 
===Подсчет подвешенных непомеченных деревьев без порядка на детях===
 
===Подсчет подвешенных непомеченных деревьев без порядка на детях===
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">F=MSet(T)</tex> {{---}} множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. <tex dpi="130">F_{n}=f_{n,n}</tex> {{---}} количество лесов с суммарным количество вершин <tex dpi="130">n</tex>. <tex dpi="130">f_{n, k}</tex> {{---}} количество таких лесов из <tex dpi="130">n</tex> вершин, что деревья в них содержат не более чем <tex dpi="130">k</tex> вершин. Чтобы получить дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней лес деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
+
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами. <tex dpi="130">F=MSet(T)</tex> {{---}} множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. <tex dpi="130">F_{n}=f_{n,n}</tex> {{---}} количество лесов с суммарным количество вершин <tex dpi="130">n</tex>. <tex dpi="130">f_{n, k}</tex> {{---}} количество таких лесов из <tex dpi="130">n</tex> вершин, что деревья в них содержат не более чем <tex dpi="130">k</tex> вершин. Чтобы получить дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней лес деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
 
:<tex dpi="150">T_{n}=F_{n-1}</tex>.
 
:<tex dpi="150">T_{n}=F_{n-1}</tex>.
 
:<tex dpi="150">F_{n}=f_{n, n}</tex>.
 
:<tex dpi="150">F_{n}=f_{n, n}</tex>.
Строка 95: Строка 95:
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex>,  <tex dpi="130">B=\{b_{1},b_{2}, \ldots ,b_{m}\}</tex> {{---}} множества из различных объектов, <tex dpi="130">D=Pair(A, B)</tex> {{---}} множество всех пар объектов, составленных из элементов <tex dpi="130">A</tex> и <tex dpi="130">B</tex>. <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>, составленных из элементов <tex dpi="130">A</tex>, а <tex dpi="130">U=\{u_{1},u_{2}, \ldots ,u_{k}\}</tex> {{---}} соответственно для <tex dpi="130">B</tex>. Тогда '''количество пар''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">D_{n}=\sum_{i=0}^{n}w_{i}u_{n-i}</tex>.
+
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z_{1}}\}</tex>,  <tex dpi="130">B=\{b_{1},b_{2}, \ldots ,b_{z_{2}}\}</tex> {{---}} множества из различных объектов, <tex dpi="130">D=Pair(A, B)</tex> {{---}} множество всех пар объектов, составленных из элементов <tex dpi="130">A</tex> и <tex dpi="130">B</tex>. <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{l}\}</tex> {{---}} количество объектов веса от <tex dpi="130">1</tex> до <tex dpi="130">l</tex>, составленных из элементов <tex dpi="130">A</tex>, а <tex dpi="130">U=\{u_{1},u_{2}, \ldots ,u_{l}\}</tex> {{---}} соответственно для <tex dpi="130">B</tex>. Тогда '''количество пар''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">D_{n}=\sum_{i=0}^{n}w_{i}u_{n-i}</tex>.
|proof=Чтобы составить пару веса <tex dpi="130">n</tex> нужно взять один элемент веса <tex dpi="130">0 \leqslant i \leqslant n</tex> и элемент веса <tex dpi="130">n-i</tex>, что полностью соответствует данной формуле.
+
|proof=Чтобы составить пару веса <tex dpi="130">n</tex> нужно взять один элемент веса <tex dpi="130">0 \leqslant i \leqslant n</tex> из <tex dpi="130">A</tex> и элемент веса <tex dpi="130">n-i</tex> из <tex dpi="130">B</tex> , что полностью соответствует данной формуле.
 
}}
 
}}
  
 
===Количество подвешенных неполных двоичных деревьев===
 
===Количество подвешенных неполных двоичных деревьев===
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">D=Pair(T, T)</tex> {{---}} множество всех пар из данных деревьев. Чтобы получить двоичное дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней левого и правого сына с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
+
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами. <tex dpi="130">D=Pair(T, T)</tex> {{---}} множество всех пар из данных деревьев. Чтобы получить двоичное дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней левого и правого сына с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
 
:<tex dpi="150">T_{n}=D_{n-1}=\sum_{i=0}^{n-1}T_{i}T_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]].
 
:<tex dpi="150">T_{n}=D_{n-1}=\sum_{i=0}^{n-1}T_{i}T_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]].
  
Строка 114: Строка 114:
 
}}
 
}}
  
Найдем <tex dpi="130">|St(\vec{i})|=z_{n,s,i}</tex> в общем случае.
+
{{Лемма
 
+
|statement= Найдем <tex dpi="130">|St(\vec{i})|=z_{n,s,i}</tex> в общем случае.
Пусть <tex dpi = "130">g=\mathrm{gcd}(s,i)</tex> {{---}} [[Наибольший общий делитель|наибольший общий делитель<tex dpi = "130">(s, i)</tex>]]. Заметим, что в <tex dpi = "130">i</tex>-ой перестановке на <tex dpi = "130">j</tex>-ой позиции стоит элемент <tex dpi = "130">(i + j)\bmod s</tex>. Также, заметим, что элемент <tex dpi = "130">a</tex> переходит в элемент <tex dpi = "130">a + in</tex>, где <tex dpi = "130">i = 1, 2, \ldots k</tex>. Из этого следует, что длина цикла для <tex dpi = "130">i</tex>-ой перестановки равна <tex dpi = "130"> \dfrac{\mathrm{lcm}(s, i)}{i}  = \dfrac{s}{g}</tex>, где  <tex dpi = "130">\mathrm{lcm}(s, i)</tex> {{---}} [[Наименьшее общее кратное|наименьшее общее кратное<tex dpi = "130">(s, i)</tex>]].
+
|proof=Пусть <tex dpi = "130">g=\mathrm{gcd}(s,i)</tex> {{---}} [[Наибольший общий делитель|наибольший общий делитель<tex dpi = "130">(s, i)</tex>]]. Заметим, что в <tex dpi = "130">i</tex>-ой перестановке на <tex dpi = "130">j</tex>-ой позиции стоит элемент <tex dpi = "130">(i + j)\bmod s</tex>. Также, заметим, что элемент <tex dpi = "130">a</tex> переходит в элемент <tex dpi = "130">a + in</tex>, где <tex dpi = "130">i = 1, 2, \ldots k</tex>. Из этого следует, что длина цикла для <tex dpi = "130">i</tex>-ой перестановки равна <tex dpi = "130"> \dfrac{\mathrm{lcm}(s, i)}{i}  = \dfrac{s}{g}</tex>, где  <tex dpi = "130">\mathrm{lcm}(s, i)</tex> {{---}} [[Наименьшее общее кратное|наименьшее общее кратное<tex dpi = "130">(s, i)</tex>]].
  
 
Также заметим, что если вес <tex dpi="130">n</tex> нельзя равномерно распределить по всей длине цикла, то стабилизатор равен <tex dpi="130">0</tex>.
 
Также заметим, что если вес <tex dpi="130">n</tex> нельзя равномерно распределить по всей длине цикла, то стабилизатор равен <tex dpi="130">0</tex>.
Строка 129: Строка 129:
  
 
<tex dpi="150">b_{n,k}=\sum_{i=1}^{n}w_{i}b_{n-i, k-1}</tex>, причем <tex dpi="150">b_{n,1}=w_{n}</tex>.
 
<tex dpi="150">b_{n,k}=\sum_{i=1}^{n}w_{i}b_{n-i, k-1}</tex>, причем <tex dpi="150">b_{n,1}=w_{n}</tex>.
 +
}}
  
 
===Задача об ожерельях===
 
===Задача об ожерельях===

Версия 03:32, 5 января 2018

Последовательности (Seq)

Утверждение:
Пусть [math]A=\{a_{1},a_{2}, \ldots ,a_{z}\}[/math] — множество из различных объектов, [math]S=Seq(A)[/math] — множество всех последовательностей из элементов [math]A[/math], [math]W=\{w_{1},w_{2}, \ldots ,w_{l}\}[/math] — количество объектов веса от [math]1[/math] до [math]l[/math]. Мы считаем, что нет объектов веса [math]0[/math], так как в противном случае существует бесконечное количество последовательностей любого веса. Тогда, количество последовательностей веса [math]n[/math] можно вычислить как [math]S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}[/math]. Причем [math]S_{0} = 1[/math], так как есть единственный способ составить пустую последовательность.
[math]\triangleright[/math]

Докажем по индукции.

База [math]n = 1[/math].

[math]S_{1}=w_{1} S_{0}=w_{1}[/math], что верно, так как единственный способ составить последовательность веса [math]1[/math] — это взять любой элемент веса [math]1[/math].

Переход.

Пусть для [math]j \lt n[/math] верно. Докажем для [math]n[/math]. Возьмем произвольный элемент из [math]A[/math] веса [math]i \leqslant n[/math], и допишем его к последовательности элементов веса [math]n-i[/math]. Образуется новая последовательность веса [math]n[/math]. Причем никакая последовательность не будет учтена дважды, так как прежде не было последовательностей веса [math]n[/math] и ни к какой последовательности меньшего веса мы не добавляем один и тот же элемент дважды.
[math]\triangleleft[/math]

Подсчет битовых векторов длины [math]n[/math]

Пусть [math]A=\{0, 1\}[/math], [math]W=\{2, 0 \ldots 0\}[/math] [math]S=Seq(A)[/math] — множество всех битовых векторов.

Тогда, [math]S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}=2S_{n-1}=2^{n}[/math].

Подсчет Seq из маленьких и больших элементов

Пусть [math]A=\{1, 2\}[/math], [math]W=\{1, 1, 0 \ldots 0\}[/math], [math]S=Seq(A)[/math] — множество всех последовательностей из маленьких и больших элементов, [math]S_{1}=1[/math].

Тогда, [math]S_{n}=\sum_{i=1}^{n} w_{i} S_{n-1}=S_{n-1}+S_{n-2}=F_{n}[/math], где [math]F_{n}[/math][math]n[/math]-ое число Фибоначчи [1].

Подсчет подвешенных непомеченных деревьев с порядком на детях

Пусть [math]T_{n}[/math] — количество таких деревьев с [math]n[/math] вершинами. [math]S=Seq(A)[/math] — множество всех последовательностей из данных деревьев. [math]S_{n}[/math] — количество последовательностей с суммарным количество вершин [math]n[/math]. Чтобы получить дерево из [math]n[/math] вершин, достаточно взять [math]1[/math] вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин [math]n-1[/math]. Тогда:

[math]T_{n}=S_{n-1}[/math].
[math]S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}[/math], где [math]C_{n}[/math][math]n[/math]-ое число Каталана.

Sequence of rooted Trees.png Ordered Rooted Trees.png

Множества (PSet)

Утверждение:
Пусть [math]A=\{a_{1},a_{2}, \ldots ,a_{z}\}[/math] — множество из различных объектов, [math]P=PSet(A)[/math] — множество всех множеств, составленных из элементов [math]A[/math], [math]W=\{w_{1},w_{2}, \ldots ,w_{l}\}[/math] — количество объектов веса от [math]1[/math] до [math]l[/math]. Мы также считаем, что нет объектов веса [math]0[/math]. Тогда количество множеств суммарного веса [math]n[/math] можно вычислить как [math]P_{n}=p_{n, n}[/math], где [math]p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}}{i} p_{n-ik, k-1}[/math] — количество таких множеств, которые содержат объекты, вес которых не больше чем [math]k[/math]. Причем [math]p_{0, i} = 1[/math], так как не набирать никакой вес есть один способ, а [math]p_{i, 0} = 0[/math], [math]i \ne 0[/math], так как нельзя набрать положительный вес из ничего.
[math]\triangleright[/math]
Изначально у нас есть только пустое множество веса [math]0[/math]. Рассмотрим очередной этап вычисления [math]p_{n,k}[/math]. Для данных [math]n[/math] и [math]k[/math] у нас уже имеется множество, которое необходимо дополнить. Мы можем сделать это добавляя от [math]0[/math] до [math]\lfloor \frac{n}{k} \rfloor[/math] элементов веса [math]k[/math] (при условии, что столько различных элементов имеется) в данное множество. Выбрать нужное количество элементов можно с помощью сочетаний. Следовательно, у нас образуется новые множества, которые будет необходимо дополнить элементами веса меньше [math]k[/math] (чтобы избежать повторений) суммарного веса [math]n-ik[/math], где [math]i[/math] — количество элементов веса [math]k[/math] которое мы добавили в данное множество. Довольно легко заметить, что данные операции полностью соответствуют описанной выше формуле.
[math]\triangleleft[/math]

Количество PSet из элементов 0 и 1

Пусть [math]A=\{0, 1\}[/math], [math]P=PSet(A)[/math] — множество всех множеств из [math]A[/math], [math]W=\{2, 0 \ldots 0\}[/math]. Тогда [math]P_{n}=p_{n, n}[/math], где [math]p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} p_{n-ik, k-1}[/math].

[math]P_{0}=p_{0, 0} = 1[/math].
[math]P_{1}=p_{1, 1} = \binom{1}{0}p_{1, 0} + \binom{2}{1}p_{0, 0} = 2p_{0, 0} = 2[/math].
[math]P_{2}=p_{2, 2} = \binom{0}{0} p_{2, 1} + \binom{0}{1}p_{0, 1} = \binom{2}{0}p_{2, 0} + \binom{2}{1}p_{1, 0} + \binom{2}{2}p_{0, 0}= p_{0, 0} = 1[/math].
[math]{P_{3}=p_{3, 3} = \binom{0}{0}p_{3, 2} + \binom{0}{1} p_{0, 2} = \binom{0}{0}p_{3, 1} + \binom{0}{1} p_{0, 1} = \binom{2}{0}p_{3, 0} + \binom{2}{1}p_{2, 0} + \binom{2}{2} p_{1, 0} + \binom{2}{3} p_{0, 0}= 0}[/math].
Для [math]n \gt 2[/math], [math]P_{n} = 0[/math] .
[math]\{\}[/math]
[math]\{0\}, \{1\}[/math]
[math]\{0, 1\}[/math]


Количество разбиений на слагаемые

Пусть [math]A=\mathbb{N}[/math], [math]P=PSet(A)[/math] — множество всех разбиений на слагаемые, [math]W=\{1 \ldots 1\}[/math], [math]w_{0} = 1[/math]. Тогда,

[math]P_{n}=p_{n, n}[/math], где [math]p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} p_{n-ik, k-1} = p_{n, k-1} + p_{n - k, k}[/math], что, как несложно заметить, соответствует формуле, полученной методом динамического программирования.


Мультимножества (MSet)

Утверждение:
Пусть [math]A=\{a_{1},a_{2}, \ldots ,a_{z}\}[/math] — множество из различных объектов, [math]M=MSet(A)[/math] — множество всех мультимножеств [2] из элементов [math]A[/math], [math]W=\{w_{1},w_{2}, \ldots ,w_{l}\}[/math] — количество объектов веса от [math]1[/math] до [math]l[/math]. Тогда количество мультимножеств из объектов суммарного веса [math]n[/math] можно вычислить как [math]M_{n}=m_{n, n}[/math], где [math]m_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} m_{n-ik, k-1}[/math] — количество таких мультимножеств, которые содержат объекты, вес которых не больше чем [math]k[/math].
[math]\triangleright[/math]
Рассуждения аналогичны рассуждениям [math]PSet[/math], однако теперь мы можем брать один и тот же элемент несколько раз. То есть для подсчета вместо обычных сочетаний нужно использовать сочетания с повторениями.
[math]\triangleleft[/math]

Количество MSet из элементов 0 и 1

Пусть [math]A=\{0, 1\}[/math], [math]S=PSet(A)[/math] — множество всех множеств из [math]A[/math], [math]W=\{2, 0 \ldots 0\}[/math], [math]w_{0} = 1[/math].

Тогда, [math]M_{n}=m_{n, n}[/math], где [math]s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1}[/math]
[math]M_{0}=m_{0, 0} = 1[/math].
[math]M_{1}=m_{1, 1} = \binom{1}{0}m_{1, 0} + \binom{2}{1}m_{0, 0} = 2m_{0, 0} = 2[/math].
[math]M_{2}=m_{2, 2} = \binom{0}{0}m_{2, 1} + \binom{0}{1} m_{0, 1} = \binom{1}{0}m_{2, 0} + \binom{2}{1}m_{1, 0} + \binom{3}{2}m_{0, 0}= 3m_{0, 0} = 3[/math].
[math]{M_{3}=m_{3, 3} = \binom{0}{0}m_{3, 2} + \binom{0}{1} m_{0, 2} = \binom{0}{0}m_{3, 1} + \binom{0}{1} m_{0, 1} = \binom{1}{0}m_{3, 0} + \binom{2}{1}m_{2, 0} + \binom{3}{2}m_{1, 0} + \binom{4}{3}m_{0, 0}= 4m_{0, 0} = 4}[/math].
[math]\{\}[/math]
[math]\{0\}, \{1\}[/math]
[math]\{0, 0\}, \{0, 1\}, \{1, 1\}[/math]
[math]\{0, 0, 0\}, \{0, 0, 1\}, \{0, 1, 1\}, \{1, 1, 1\}[/math]
[math]{M_{n}=m_{n, n} = \binom{0}{0}m_{n, n-1} + \binom{0}{1} m_{0, n-1} = \binom{0}{0}m_{n, n-2} + \binom{0}{1} m_{0, n-2} = \ldots = \binom{1}{0}m_{n, 0} + \binom{2}{1}m_{n - 1, 0} + \ldots + \binom{n}{n-1}m_{1, 0} + \binom{n+1}{n} m_{0,0} = (n + 1) m_{0,0} = n+1}[/math].

Подсчет подвешенных непомеченных деревьев без порядка на детях

Пусть [math]T_{n}[/math] — количество таких деревьев с [math]n[/math] вершинами. [math]F=MSet(T)[/math] — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. [math]F_{n}=f_{n,n}[/math] — количество лесов с суммарным количество вершин [math]n[/math]. [math]f_{n, k}[/math] — количество таких лесов из [math]n[/math] вершин, что деревья в них содержат не более чем [math]k[/math] вершин. Чтобы получить дерево из [math]n[/math] вершин, достаточно взять [math]1[/math] вершину и подвесить к ней лес деревьев с суммарным количеством вершин [math]n-1[/math]. Тогда:

[math]T_{n}=F_{n-1}[/math].
[math]F_{n}=f_{n, n}[/math].
[math]f{n,k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{T_{k}+i-1}{i} s_{n-ik, k-1}[/math].

Количество таких деревьев с [math]n[/math] вершинами образуют последовательность [math] 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847 \ldots[/math] [3]

Forests.png Rooted Trees.png


Пары (Pair)

Утверждение:
Пусть [math]A=\{a_{1},a_{2}, \ldots ,a_{z_{1}}\}[/math], [math]B=\{b_{1},b_{2}, \ldots ,b_{z_{2}}\}[/math] — множества из различных объектов, [math]D=Pair(A, B)[/math] — множество всех пар объектов, составленных из элементов [math]A[/math] и [math]B[/math]. [math]W=\{w_{1},w_{2}, \ldots ,w_{l}\}[/math] — количество объектов веса от [math]1[/math] до [math]l[/math], составленных из элементов [math]A[/math], а [math]U=\{u_{1},u_{2}, \ldots ,u_{l}\}[/math] — соответственно для [math]B[/math]. Тогда количество пар из объектов суммарного веса [math]n[/math] можно вычислить как [math]D_{n}=\sum_{i=0}^{n}w_{i}u_{n-i}[/math].
[math]\triangleright[/math]
Чтобы составить пару веса [math]n[/math] нужно взять один элемент веса [math]0 \leqslant i \leqslant n[/math] из [math]A[/math] и элемент веса [math]n-i[/math] из [math]B[/math] , что полностью соответствует данной формуле.
[math]\triangleleft[/math]

Количество подвешенных неполных двоичных деревьев

Пусть [math]T_{n}[/math] — количество таких деревьев с [math]n[/math] вершинами. [math]D=Pair(T, T)[/math] — множество всех пар из данных деревьев. Чтобы получить двоичное дерево из [math]n[/math] вершин, достаточно взять [math]1[/math] вершину и подвесить к ней левого и правого сына с суммарным количеством вершин [math]n-1[/math]. Тогда:

[math]T_{n}=D_{n-1}=\sum_{i=0}^{n-1}T_{i}T_{n-i-1}=C_{n}[/math], где [math]C_{n}[/math][math]n[/math]-ое число Каталана.

Циклы (Cycle)

Утверждение:
Пусть [math]A=\{a_{1},a_{2}, \ldots ,a_{z}\}[/math] — множество из различных объектов, [math]C=Cycle(A)[/math] — множество всех циклов [4] из элементов [math]A[/math], [math]W=\{w_{1},w_{2}, \ldots ,w_{m}\}[/math] — количество объектов веса [math]\{1 \ldots m\}[/math].

Тогда количество циклов веса [math]n[/math] можно вычислить как [math]C_{n}=\sum_{s=1}^{n}c_{n, s}[/math], где [math]c_{n,s}[/math] — количество циклов веса [math]n[/math] длины [math]s[/math].

По лемме Бёрнсайда [math]c_{n,s} =\sum_{i=0}^{s-1}\dfrac{|St(\vec{i})|}{s}[/math], где [math]|St(\vec{i})|[/math] — количество стабилизаторов для циклического сдвига на [math]i[/math] .
[math]\triangleright[/math]
Очевидно, что длина цикла веса [math]n[/math] может быть от [math]1[/math] до [math]n[/math]. Посмотрим сколько существует циклов каждой длины. Это можно сделать по лемме Бёрнсайда.
[math]\triangleleft[/math]
Лемма:
Найдем [math]|St(\vec{i})|=z_{n,s,i}[/math] в общем случае.
Доказательство:
[math]\triangleright[/math]

Пусть [math]g=\mathrm{gcd}(s,i)[/math]наибольший общий делитель[math](s, i)[/math]. Заметим, что в [math]i[/math]-ой перестановке на [math]j[/math]-ой позиции стоит элемент [math](i + j)\bmod s[/math]. Также, заметим, что элемент [math]a[/math] переходит в элемент [math]a + in[/math], где [math]i = 1, 2, \ldots k[/math]. Из этого следует, что длина цикла для [math]i[/math]-ой перестановки равна [math] \dfrac{\mathrm{lcm}(s, i)}{i} = \dfrac{s}{g}[/math], где [math]\mathrm{lcm}(s, i)[/math]наименьшее общее кратное[math](s, i)[/math].

Также заметим, что если вес [math]n[/math] нельзя равномерно распределить по всей длине цикла, то стабилизатор равен [math]0[/math].

[math]z_{n, s, i} = \left \{\begin{array}{ll} 0, & n \bmod \frac{s}{g} \neq 0 \\ b_{\frac{ng}{s}, g}, & n \bmod \frac{s}{g} = 0 \end{array} \right. [/math]

Где [math]b_{n,k}[/math] — число способов упорядочить набор из [math]k[/math] элементов суммарного веса [math]n[/math] и

[math]b_{n,k}=\sum_{i=1}^{n}w_{i}b_{n-i, k-1}[/math], причем [math]b_{n,1}=w_{n}[/math].
[math]\triangleleft[/math]

Задача об ожерельях

Решим данным способом задачу об ожерельях. Пусть необходимый вес [math]n[/math] — это количество бусинок, а [math]k[/math] — количество цветов. Причем каждая бусинка весит [math]1[/math]. То есть [math]W=\{k, 0 \ldots 0\}[/math].

[math]C_{n}=\sum_{s=1}^{n}c_{n,s}=c_{n,n}[/math] так как невозможно набрать вес [math]n[/math] менее, чем [math]n[/math] бусинами при весе бусин [math]1[/math].

[math]c_{n,n}=\sum_{i=0}^{n-1}\dfrac{|St(\vec{i})|}{n}=\dfrac{1}{n}\sum_{i=0}^{s-1}|St(\vec{i})|=\dfrac{1}{n}\sum_{i=0}^{s-1}b_{\mathrm{gcd}(n,i),\mathrm{gcd}(n,i)}[/math]. Поскольку все бусины имеют одинаковый вес [math]1[/math], то [math]b_{n,k} \neq 0[/math]

В итоге, [math]C_{n}=\dfrac{1}{n}\sum_{i=0}^{s-1}k^{\mathrm{gcd}(n,i)}[/math].

Метод производящих функций

Такие большие группы часто анализируют с помощью производящих функций. Один из популярных методов — метод символов (англ. Symbolic method). Он использует внутреннюю структуру объектов для получения производящих функций. В случае непомеченных объектов, как и в анализе в нашей статье, считается, что нет объектов нулевого веса. Иногда для удобства их добавляют, чтобы показать наличие одного пустого множества. При непомеченных объектах рассмотренные классы имеют следующие производящие функции:

[math]Seq(A)[/math] [math]\dfrac{1}{1-A(z)}[/math]
[math]Pset(A)[/math] [math]\prod\limits_{n \geqslant 1}(1+z^{n})^{A_{n}}=\exp(-\sum\limits_{k \geqslant 1}\dfrac{(-1)^{k}A(z^{k})}{k})[/math]
[math]Mset(A)[/math] [math]\prod\limits_{n \geqslant 1}\dfrac{1}{(1-z^{n})^{A_{n}}}=\exp(\sum\limits_{k \geqslant 1}\dfrac{A(z^{k})}{k})[/math]
[math]Pair(A,B)[/math] [math]A(z)B(z)[/math]
[math]Cycle(A)[/math] [math]\sum\limits_{n \geqslant 1}\dfrac{\phi(n)}n\ln\dfrac{1}{1 - A(z^n)}[/math], где [math]\phi(n)[/math] функция Эйлера.

Однако порой некоторые комбинаторные классы удобнее обозначать как помеченные. Например, — помеченные графы. С помеченными объектами используется экспоненциальная производящая функция [5]. В данном случае для некоторых рассмотренных классов используются следующие производящие функции:

[math]Seq(A)[/math] [math]\dfrac{1}{1-A(z)}[/math]
[math]Pset(A)[/math] [math]\exp(A(z))[/math]
[math]Pair(A,B)[/math] [math]A(z)B(z)[/math]
[math]Cycle(A)[/math] [math]\ln\dfrac{1}{1-A(z)}[/math].

См.также

Примeчания

Источники информации