Задача о динамической связности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Обобщение задачи для произвольных графов)
(Обобщение задачи для произвольных графов)
Строка 11: Строка 11:
 
== Обобщение задачи для произвольных графов ==
 
== Обобщение задачи для произвольных графов ==
  
Существуют задачи, в которых граф не обязательно на протяжении нашей работы после каждой операции добавления ребра остаётся лесом. Но мы можем в каждой компоненте связности выделить [[https://neerc.ifmo.ru/wiki/index.php?title=%D0%9E%D1%81%D1%82%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5_%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D1%8C%D1%8F:_%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F,_%D0%BB%D0%B5%D0%BC%D0%BC%D0%B0_%D0%BE_%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%D0%BD%D0%BE%D0%BC_%D1%80%D0%B5%D0%B1%D1%80%D0%B5|остовные деревья]], которые образуют остовный лес.
+
Существуют задачи, в которых граф не обязательно на протяжении нашей работы после каждой операции добавления ребра остаётся лесом. Но мы можем в каждой компоненте связности выделить [[Остовные деревья: определения, лемма о безопасном ребре|остовные деревья]], которые образуют остовный лес.
  
  

Версия 22:25, 7 января 2018

Задача:
Есть неориентированный граф из [math]n[/math] вершин, изначально не содержащий рёбер. Требуется обработать [math]m[/math] запросов трёх типов:
  • [math]\mathrm{add(u,v)}[/math] — добавить ребро между вершинами [math]u[/math] и [math]v[/math];
  • [math]\mathrm{remove(u,v)}[/math] — удалить ребро между вершинами [math]u[/math] и [math]v[/math];
  • [math]\mathrm{connected(u,v)}[/math] — проверить, лежат ли вершины [math]u[/math] и [math]v[/math] в одной компоненте связности.

В этой статье будет приведено решение задачи online, то есть отвечать на get-запрос (проверять наличие пути между вершинами) мы будем сразу.

Динамическая связность в лесах

Если задача такова, что в графе нет и не может быть циклов, то она сводится к задаче о связности в деревьях эйлерова обхода. Время работы каждого запроса для упрощённой задачи — [math]O(\log n)[/math].

Обобщение задачи для произвольных графов

Существуют задачи, в которых граф не обязательно на протяжении нашей работы после каждой операции добавления ребра остаётся лесом. Но мы можем в каждой компоненте связности выделить остовные деревья, которые образуют остовный лес.




См. также

Источники информации