Марковская цепь — различия между версиями
Rybak (обсуждение | вклад) (→Литература) |
Rybak (обсуждение | вклад) (→Смотри также) |
||
Строка 37: | Строка 37: | ||
На русской википедии: | На русской википедии: | ||
− | * [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D0%B8_%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D0%B0 Цепь Маркова] | + | * [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D0%B8_%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D0%B0 Цепь Маркова] |
− | * [http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2,_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B9_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B5%D0%B2%D0%B8%D1%87_(%D1%81%D1%82%D0%B0%D1%80%D1%88%D0%B8%D0%B9) Андрей Андреевич Марков] | + | * [http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2,_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B9_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B5%D0%B2%D0%B8%D1%87_(%D1%81%D1%82%D0%B0%D1%80%D1%88%D0%B8%D0%B9) Андрей Андреевич Марков] |
== Литература == | == Литература == | ||
* И.В. Романовский. ''«Дискретный анализ»'' | * И.В. Романовский. ''«Дискретный анализ»'' |
Версия 12:23, 26 декабря 2010
Содержание
Определение
Определение: |
Цепь Маркова — процесс, находящийся в одном из При этом, если он находиться в состоянии с номером Матрицу , то он перейдет в состояние с вероятностью . называют матрицей переходов. | состояний.
На матрицу переходов накладываются следующие условия:
Такая матрица называется стохастической.
В общем случае для марковской цепи задают вектор
. — вероятность того, что в начале процесса марковская цепь находиться в состоянии .Марковскую цепь можно представить в виде графа, в котором вершины — это состояния процесса, а ребра — переходы между состояниями, и на ребре из
в написана вероятность перехода из в , то есть .Состояния
Состояния марковской цепи делятся на два класса: поглощающие (существенные) и непоглощающие (несущественные).
Определение: |
Состояние | называют поглощающим (существенным), если оно достижимо и . Все остальные состояния называют непоглощающими (несущественными).
В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими — 1 и 2.
Вероятность того, что через
шагов марковская цепь будет находиться в состоянии равнаСмотри также
На русской википедии:
Литература
- И.В. Романовский. «Дискретный анализ»