Произведение Адамара рациональных производящих функций — различия между версиями
(→Рациональность произведения Адамара) |
|||
Строка 12: | Строка 12: | ||
\dots, p_l(n)</tex>, что начиная с некоторого номера <tex>n</tex> | \dots, p_l(n)</tex>, что начиная с некоторого номера <tex>n</tex> | ||
<tex>a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n.</tex> | <tex>a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n.</tex> | ||
− | Выражение в правой части равенства называется '''квазимногочленом''' (англ. ''quasypolynomial '') | + | Выражение в правой части равенства называется '''квазимногочленом''' (англ. ''quasypolynomial'') от переменной <tex>n</tex>. |
|proof= | |proof= | ||
Версия 18:21, 1 марта 2018
Одно из наиболее привлекательных свойств рациональных производящих функций — их замкнутость относительно произведения Адамара.
Определение: |
Произведением Адамара (англ. Hadamard product) производящих функций | и называется производящая функция .
Таким образом, произведение Адамара двух последовательностей — это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в задаче о числе счастливых билетов нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена . Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно , а число объектов второго типа то число пар объектов, составленных из элементов первого и второго типа, равно .
Рациональность произведения Адамара
Лемма: |
Производящая функция для последовательности рациональна тогда и только тогда, когда существуют такие числа и такие многочлены , что начиная с некоторого номера
Выражение в правой части равенства называется квазимногочленом (англ. quasypolynomial) от переменной . |
Доказательство: |
Заметим прежде всего, что производящая функция имеет вид
Коэффициент при в этой производящей функции равен, где — многочлен от степени . Всякая рациональная функция от переменной представляется в виде линейной комбинации многочлена и элементарных дробей вида , поэтому коэффициенты соответствующей производящей функции являются квазимногочленами.
Наоборот, предположим, что коэффициенты производящей функции, начиная с некоторого номера, представляются в виде квазимногочлена. Покажем, что в случае квазимногочлена Для произвольного квазимногочлена мы получаем линейную комбинацию функций такого вида при разных соответствующая производящая функция рациональна. Пусть степень многочлена равна . Многочлены , определенные равенством , образуют базис в пространстве многочленов степени не выше . Действительно, любая последовательность многочленов степеней образует базис в этом пространстве. Поэтому многочлен представляется в виде линейной комбинации многочленов и соответствующая производящая функция есть просто линейная комбинация функций , . . |
Теорема: |
Предположим, что производящие функции для последовательностей и
и являются рациональными. Значит производящая функция для их произведения Адамара является тоже рациональной. Проще говоря, произведение Адамара двух рациональных производящих функций рационально. . |
Доказательство: |
Для доказательства теоремы осталось заменить, что произведение квазимногочленов является квазимногочленом. Это утверждение непосредственно вытекает из формулы |
См. также
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 26с. ISBN 978-5-94057-042-4
- Wikipedia — Generating function transformation