Системы счисления — различия между версиями
Senya (обсуждение | вклад) м (→Смешанные системы счисления: tex) (Метки: правка с мобильного устройства, правка из мобильной версии) |
Senya (обсуждение | вклад) м (→Фибоначчиева система счисления: tex) (Метки: правка с мобильного устройства, правка из мобильной версии) |
||
Строка 42: | Строка 42: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | + | Последовательность чисел Фибоначчи <tex>\left\{F_n\right\}</tex> задается линейным рекуррентным соотношением: | |
: <tex>F_0 = 0,\qquad F_1 = 1,\qquad F_{n+1} = F_n + F_{n-1}, \quad n\in\mathbb{N}.</tex> | : <tex>F_0 = 0,\qquad F_1 = 1,\qquad F_{n+1} = F_n + F_{n-1}, \quad n\in\mathbb{N}.</tex> | ||
}} | }} | ||
Строка 48: | Строка 48: | ||
'''Фибоначчиева система счисления''' основывается на [https://en.wikipedia.org/wiki/Fibonacci_number числах Фибоначчи]. | '''Фибоначчиева система счисления''' основывается на [https://en.wikipedia.org/wiki/Fibonacci_number числах Фибоначчи]. | ||
− | : <tex>x = \sum_{k=0}^n f_k F_k</tex>, где <tex>F_k</tex> — числа Фибоначчи, <tex>f_k\in\{0,1\}</tex>, при этом в записи <tex>f_nf_{n-1}\ | + | : <tex>x = \sum_{k=0}^n f_k F_k</tex>, где <tex>F_k</tex> — числа Фибоначчи, <tex>f_k\in\{0,1\}</tex>, при этом в записи <tex>f_nf_{n-1}\ldots f_0</tex> не встречается две единицы подряд. |
− | Таким образом, любое неотрицательное целое число <tex>a = 0,\ 1,\ 2,\ | + | Таким образом, любое неотрицательное целое число <tex>a = 0,\ 1,\ 2,\ldots </tex> можно единственным образом представить через последовательность битов …ε<sub>k</sub>…ε<sub>4</sub>ε<sub>3</sub>ε<sub>2</sub>: <tex>a = \sum_k \varepsilon_k F_k,\ \varepsilon_k\in\{0,1\}</tex>, причём последовательность {ε<sub>k</sub>} содержит лишь конечное число единиц, и не имеет пар соседних единиц: <tex>\forall k\ge 2: (\varepsilon_k=1) \Rightarrow (\varepsilon_{k+1}=0)</tex>. |
За исключением последнего свойства, данное представление аналогично двоичной системе счисления. | За исключением последнего свойства, данное представление аналогично двоичной системе счисления. | ||
+ | |||
==Теорема Цекендорфа (англ. ''Zeckendorf's theorem'')== | ==Теорема Цекендорфа (англ. ''Zeckendorf's theorem'')== | ||
{{Теорема | {{Теорема |
Версия 04:47, 11 мая 2018
Определение: |
Систе́ма счисле́ния (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков. |
Содержание
Позиционные системы счисления
В позиционных системах счисления (англ. positional numeral systems) один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен.
Под позиционной системой счисления обычно понимается b-ричная система счисления, которая определяется целым числом , называемым основанием системы счисления.
Запись числа в b-ичной системе счисления
Целое число x в b-ичной системе счисления представляется в виде конечной линейной комбинации степеней числа b:
- , где — это целые числа, называемые цифрами, удовлетворяющие неравенству .
Каждая степень
в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно для ненулевого числа требуют, чтобы старшая цифра в b-ичном представлении была также ненулевой.Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число
записывают в виде последовательности его b-ичных цифр, перечисляемых по убыванию старшинства разрядов слева направо:Например, число сто три представляется в десятичной системе счисления в виде:
Наиболее употребляемыми в настоящее время позиционными системами являются:
- 1 — единичная (как позиционная может и не рассматриваться; счёт на пальцах, зарубки, узелки «на память» и др.);
- 2 — двоичная (в дискретной математике, информатике, программировании);
- 8 — восьмеричная;
- 10 — десятичная (используется повсеместно);
- 12 — двенадцатеричная (счёт дюжинами);
- 16 — шестнадцатеричная (используется в программировании, информатике).
Смешанные системы счисления
Смешанная система счисления (англ. mixed radix numeral systems) является обобщением
-ичной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел и каждое число представляется как линейная комбинация:- , где на коэффициенты (называемые как и прежде цифрами) накладываются некоторые ограничения.
Записью числа
в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.В зависимости от вида
как функции от смешанные системы счисления могут быть степенными, показательными и т. п. Когда для некоторого , показательная смешанная система счисления совпадает с -ичной системой счисления.Наиболее известным примером смешанной системы счисления являются представление времени в виде количества суток, часов, минут и секунд. При этом величина
дней, часов, минут, секунд соответствует значению секунд.Фибоначчиева система счисления
Определение: |
Последовательность чисел Фибоначчи | задается линейным рекуррентным соотношением:
Фибоначчиева система счисления основывается на числах Фибоначчи.
- , где — числа Фибоначчи, , при этом в записи не встречается две единицы подряд.
Таким образом, любое неотрицательное целое число
можно единственным образом представить через последовательность битов …εk…ε4ε3ε2: , причём последовательность {εk} содержит лишь конечное число единиц, и не имеет пар соседних единиц: . За исключением последнего свойства, данное представление аналогично двоичной системе счисления.Теорема Цекендорфа (англ. Zeckendorf's theorem)
Теорема: |
Любое неотрицательное целое число представимо в виде суммы некоторого набора чисел Фибоначчи, не содержащего пары соседних чисел Фибоначчи. Причём представление такое единственно. |
Доказательство: |
Доказательство существования легко провести по индукции. Любое целое число | попадёт в промежуток между двумя соседними числами Фибоначчи, то есть для некоторого верно неравенство: . Таким образом, , где , так что разложение числа уже не будет содержать слагаемого .