Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
Iksiygrik (обсуждение | вклад) м |
||
Строка 9: | Строка 9: | ||
|id=lemma1. | |id=lemma1. | ||
|statement= | |statement= | ||
− | Пусть последовательность <tex>a_0,a_1,...</tex> положительных чисел такова, что <tex>\frac{a_{n+1}}{a_n}=A\frac{n^k+\alpha_1 n^{k-1}+...+\alpha_k}{n^k+\beta_1 n^{k-1}+...+\beta_k}(4.1)</tex> для всех достаточно больших n, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim cA^n n^{\alpha_1-\beta_1}(4.2)</tex> для некоторой постоянной <tex>c>0</tex>. | + | Пусть последовательность <tex>a_0,a_1,...</tex> положительных чисел такова, что <tex>\frac{a_{n+1}}{a_n}=A\frac{n^k+\alpha_1 n^{k-1}+...+\alpha_k}{n^k+\beta_1 n^{k-1}+...+\beta_k}(4.1)</tex> для всех достаточно больших <tex>n</tex>, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim cA^n n^{\alpha_1-\beta_1}(4.2)</tex> для некоторой постоянной <tex>c>0</tex>. |
|proof= | |proof= | ||
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n</tex>. | Утверждение леммы эквивалентно тому, что существует предел <tex>\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n</tex>. | ||
− | Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер N, что для всех n > N и всех положительных m | + | Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер <tex>N</tex>, что для всех <tex>n > N</tex> и всех положительных <tex>m</tex> |
<tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>, | <tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>, | ||
Строка 33: | Строка 33: | ||
<tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>. | <tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>. | ||
− | Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0: | + | Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции <tex>f</tex>, определенной формулой (4.8), в ряд в точке <tex>0</tex>: |
− | <tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции f имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной C при достаточно маленьком x имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>∀ n>N</tex> | + | <tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции <tex>f</tex> имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной <tex>C</tex> при достаточно маленьком <tex>x</tex> имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>∀ n>N</tex> |
<tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>, | <tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>, | ||
Строка 59: | Строка 59: | ||
<tex>\le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |</tex>. | <tex>\le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |</tex>. | ||
− | Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших n можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, | + | Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, |
[[Файл:InkedOiGdtVITsP10_LI.jpg|300px|center]] | [[Файл:InkedOiGdtVITsP10_LI.jpg|300px|center]] | ||
Строка 67: | Строка 67: | ||
}} | }} | ||
− | '''Замечание:''' Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность | + | '''Замечание:''' Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность <tex>a_n</tex> на произвольную постоянную <tex>d > 0</tex>, мы получим новую последовательность с тем же отношением последовательных членов, константа <tex>c</tex> для которой увеличивается в <tex>d</tex> раз |
== Примеры == | == Примеры == | ||
Строка 74: | Строка 74: | ||
<tex>\frac{c_{n+1}}{c_n}=\frac{4n+2}{n+2}=4\frac{n+\frac{1}{2}}{n+2}</tex> | <tex>\frac{c_{n+1}}{c_n}=\frac{4n+2}{n+2}=4\frac{n+\frac{1}{2}}{n+2}</tex> | ||
− | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex> для некоторой постоянной c. | + | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex> для некоторой постоянной <tex>c</tex>. |
'''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | '''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | ||
Строка 81: | Строка 81: | ||
<tex>(a-s)^{\alpha}=a^{\alpha}(1-\frac{s}{a})^{\alpha}=a^{\alpha}(1 - \frac{\alpha}{1!} \frac{s}{a} + \frac{\alpha(\alpha-1)}{2!}{(\frac{s}{a})^2} - \frac{\alpha(\alpha-1)(\alpha-2)}{3!}(\frac{s}{a})^3+...)</tex>. | <tex>(a-s)^{\alpha}=a^{\alpha}(1-\frac{s}{a})^{\alpha}=a^{\alpha}(1 - \frac{\alpha}{1!} \frac{s}{a} + \frac{\alpha(\alpha-1)}{2!}{(\frac{s}{a})^2} - \frac{\alpha(\alpha-1)(\alpha-2)}{3!}(\frac{s}{a})^3+...)</tex>. | ||
− | Если <tex>\alpha</tex> — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться | + | Если <tex>\alpha</tex> — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при <tex>a_n=(-1)^n \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!{\alpha}^n}</tex> |
<tex>\frac{a_{n+1}}{a_n}=\frac{1}{a} \frac{n-\alpha}{n+1}</tex> | <tex>\frac{a_{n+1}}{a_n}=\frac{1}{a} \frac{n-\alpha}{n+1}</tex> |
Версия 20:33, 16 мая 2018
Определение: |
Пусть у нас есть последовательность, отношение соседних членов которой равно отношению двух многочленов одинаковой степени. Если же степени многочленов больше нуля, то соответствующую последовательность называют гипергеометрической. |
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной . |
Доказательство: |
Утверждение леммы эквивалентно тому, что существует предел Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[1]. Фундаментальность последовательности означает, что для любого существует такой номер , что для всех и всех положительных , или . Перепишем отношение в виде, где
Прологарифмировав (4.7), получаем . Посмотрим на функцию . Выпишем начальные члены разложения функции , определенной формулой (4.8), в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем . Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если N достаточно велико, то , ,
. Теперь интересующее нас выражение в левой части неравенства (4.6) можно оценить с помощью системы (4.10) и неравенства треугольника:
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
|
Замечание: Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность
на произвольную постоянную , мы получим новую последовательность с тем же отношением последовательных членов, константа для которой увеличивается в разПримеры
Пример. Для чисел Каталана имеем
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем.
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для