Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
Iksiygrik (обсуждение | вклад) м |
||
Строка 11: | Строка 11: | ||
Пусть последовательность <tex>a_0, a_1, \ldots</tex> положительных чисел такова, что <tex>\cfrac{a_{n+1}}{a_n}=A\cfrac{n^k+\alpha_1 n^{k-1}+ \ldots +\alpha_k}{n^k+\beta_1 n^{k-1}+ \ldots +\beta_k}</tex> для всех достаточно больших <tex>n</tex>, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim cA^n n^{\alpha_1-\beta_1}</tex> для некоторой постоянной <tex>c>0</tex>. | Пусть последовательность <tex>a_0, a_1, \ldots</tex> положительных чисел такова, что <tex>\cfrac{a_{n+1}}{a_n}=A\cfrac{n^k+\alpha_1 n^{k-1}+ \ldots +\alpha_k}{n^k+\beta_1 n^{k-1}+ \ldots +\beta_k}</tex> для всех достаточно больших <tex>n</tex>, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim cA^n n^{\alpha_1-\beta_1}</tex> для некоторой постоянной <tex>c>0</tex>. | ||
|proof= | |proof= | ||
− | Утверждение леммы эквивалентно тому, что существует предел <tex>\lim\limits_{n \to \infty} {\cfrac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim\limits_{n \to \infty} { \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n }</tex>. | + | Утверждение леммы эквивалентно тому, что существует предел <tex>\lim\limits_{n \to \infty} {\cfrac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim\limits_{n \to \infty} {( \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n )}</tex>. |
Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>ε > 0</tex> существует такой номер <tex>N</tex>, что для всех <tex>n > N</tex> и всех положительных <tex>m</tex> | Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>ε > 0</tex> существует такой номер <tex>N</tex>, что для всех <tex>n > N</tex> и всех положительных <tex>m</tex> | ||
Строка 35: | Строка 35: | ||
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции <tex>f</tex> в ряд в точке <tex>0</tex>: | Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции <tex>f</tex> в ряд в точке <tex>0</tex>: | ||
− | <tex>f(x)=1 + (\alpha_1 - \beta_1)x + \gamma x^2 + \ldots</tex> | + | <tex>f(x)=1 + (\alpha_1 - \beta_1)x + \gamma x^2 + \ldots </tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции <tex>f</tex> имеем |
<tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2 + \ldots</tex> | <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2 + \ldots</tex> | ||
Строка 61: | Строка 61: | ||
<tex>\ldots</tex> | <tex>\ldots</tex> | ||
− | <tex>+ | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \cfrac{1}{n+m}| + | \alpha_1 - \beta_1 | | \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n | \leqslant</tex> | + | <tex>+ | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \cfrac{1}{n+m}| + | \alpha_1 - \beta_1 | \cdot | \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n | \leqslant</tex> |
− | <tex>\leqslant C(\cfrac{1}{n^2} + \cfrac{1}{(n+1)^2} + \ldots + \cfrac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n |</tex>. | + | <tex>\leqslant C(\cfrac{1}{n^2} + \cfrac{1}{(n+1)^2} + \ldots + \cfrac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | \cdot | \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n |</tex>. |
Поскольку ряд <tex>\sum\limits_{k=1}^{\infty} \cfrac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\cfrac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, | Поскольку ряд <tex>\sum\limits_{k=1}^{\infty} \cfrac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\cfrac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, | ||
Строка 78: | Строка 78: | ||
'''Пример.''' Для [[Числа Каталана|чисел Каталана]] имеем | '''Пример.''' Для [[Числа Каталана|чисел Каталана]] имеем | ||
− | <tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4n+2}{n+2}=4\cfrac{n+\ | + | <tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4n+2}{n+2}=4\cfrac{n+\frac{1}{2}}{n+2}</tex> |
− | Поэтому <tex>c_n \sim c | + | Поэтому <tex>c_n \sim c 4^n n^{-\frac{3}{2}}</tex> для некоторой постоянной <tex>c</tex>. |
'''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | '''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | ||
Строка 91: | Строка 91: | ||
<tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cfrac{n-\alpha}{n+1}</tex> | <tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cfrac{n-\alpha}{n+1}</tex> | ||
− | Поэтому <tex>a_n \sim c | + | Поэтому <tex>a_n \sim c a^{-n} n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4s)^{\frac{1}{2}}</tex> ведут себя как <tex>c 4^n n^{-\frac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для [[Числа Каталана|чисел Каталана]]. |
== См. также == | == См. также == |
Версия 19:57, 21 мая 2018
Определение: |
Последовательность, в которой отношение двух соседних членов равно отношению многочленов степени | , где , называется гипергеометрической (англ. hypergeometric sequence).
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной . |
Доказательство: |
Утверждение леммы эквивалентно тому, что существует предел Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[1]. Фундаментальность последовательности означает, что для любого существует такой номер , что для всех и всех положительных
или
Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то, ,
. Теперь интересующее нас выражение в левой части неравенства [2]: можно оценить с помощью системы и неравенства треугольника
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
|
Замечание: Предположения леммы не позволяют определить величину константы
. Действительно, умножив последовательность на произвольную постоянную , мы получим новую последовательность с тем же отношением последовательных членов, константа для которой увеличивается в разПримеры
Пример. Для чисел Каталана имеем
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем.
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для